mahendra0203 commited on
Commit
fcffdde
·
verified ·
1 Parent(s): 79e7f4b

End of training

Browse files
Files changed (1) hide show
  1. README.md +164 -5
README.md CHANGED
@@ -1,5 +1,164 @@
1
- ---
2
- license: other
3
- license_name: test-license
4
- license_link: LICENSE
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-v0.1
3
+ library_name: peft
4
+ license: apache-2.0
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: mistral-test-alpaca
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ base_model: mistralai/Mistral-7B-v0.1
22
+ model_type: MistralForCausalLM
23
+ tokenizer_type: LlamaTokenizer
24
+ is_mistral_derived_model: true
25
+
26
+ load_in_8bit: false
27
+ load_in_4bit: true
28
+ strict: false
29
+
30
+ lora_fan_in_fan_out: false
31
+ data_seed: 49
32
+ seed: 49
33
+
34
+ datasets:
35
+ - path: sample_data/alpaca_synth_queries.jsonl
36
+ type: sharegpt
37
+ conversation: alpaca
38
+
39
+ dataset_prepared_path: last_run_prepared
40
+ val_set_size: 0.1
41
+ output_dir: ./ft-v1
42
+ hub_model_id: mahendra0203/mistral-test-alpaca
43
+
44
+ adapter: qlora
45
+ lora_model_dir:
46
+ sequence_len: 512 # Reduced from 896
47
+ sample_packing: true # Enable sample packing
48
+ eval_sample_packing: false
49
+ pad_to_sequence_len: false # Changed to false
50
+
51
+ lora_r: 16 # Reduced from 32
52
+ lora_alpha: 32
53
+ lora_dropout: 0.05
54
+ lora_target_linear: true
55
+ lora_fan_in_fan_out:
56
+ lora_target_modules:
57
+ - gate_proj
58
+ - down_proj
59
+ - up_proj
60
+ - q_proj
61
+ - v_proj
62
+ - k_proj
63
+ - o_proj
64
+
65
+ wandb_project: ft-alpaca-mistral-hc
66
+ wandb_entity: mahendra0203
67
+
68
+ gradient_accumulation_steps: 8 # Increased from 4
69
+ micro_batch_size: 4 # Reduced from 16
70
+ eval_batch_size: 4 # Reduced from 16
71
+ num_epochs: 2
72
+ optimizer: adamw_bnb_8bit
73
+ lr_scheduler: cosine
74
+ learning_rate: 0.0002
75
+ max_grad_norm: 1.0
76
+ adam_beta2: 0.95
77
+ adam_epsilon: 0.00001
78
+ save_total_limit: 3 # Reduced from 12
79
+
80
+ train_on_inputs: false
81
+ group_by_length: true # Changed to true
82
+ bf16: true # Changed to false
83
+ fp16: false # Changed to true
84
+ tf32: false
85
+
86
+ gradient_checkpointing: true
87
+ early_stopping_patience:
88
+ resume_from_checkpoint:
89
+ local_rank:
90
+ logging_steps: 1
91
+ xformers_attention: false
92
+ flash_attention: false
93
+
94
+ loss_watchdog_threshold: 5.0
95
+ loss_watchdog_patience: 3
96
+
97
+ warmup_steps: 20
98
+ evals_per_epoch: 2 # Reduced from 4
99
+ eval_table_size:
100
+ eval_table_max_new_tokens: 128
101
+ saves_per_epoch: 2 # Reduced from 6
102
+ debug:
103
+ weight_decay: 0.0
104
+ fsdp:
105
+ fsdp_config:
106
+ special_tokens:
107
+ bos_token: "<s>"
108
+ eos_token: "</s>"
109
+ unk_token: "<unk>"
110
+ save_safetensors: true
111
+ ```
112
+
113
+ </details><br>
114
+
115
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mahendra0203/ft-alpaca-mistral-hc/runs/yp7zk4y6)
116
+ # mistral-test-alpaca
117
+
118
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
119
+ It achieves the following results on the evaluation set:
120
+ - Loss: 1.3238
121
+
122
+ ## Model description
123
+
124
+ More information needed
125
+
126
+ ## Intended uses & limitations
127
+
128
+ More information needed
129
+
130
+ ## Training and evaluation data
131
+
132
+ More information needed
133
+
134
+ ## Training procedure
135
+
136
+ ### Training hyperparameters
137
+
138
+ The following hyperparameters were used during training:
139
+ - learning_rate: 0.0002
140
+ - train_batch_size: 4
141
+ - eval_batch_size: 4
142
+ - seed: 49
143
+ - gradient_accumulation_steps: 8
144
+ - total_train_batch_size: 32
145
+ - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
146
+ - lr_scheduler_type: cosine
147
+ - lr_scheduler_warmup_steps: 20
148
+ - num_epochs: 2
149
+
150
+ ### Training results
151
+
152
+ | Training Loss | Epoch | Step | Validation Loss |
153
+ |:-------------:|:------:|:----:|:---------------:|
154
+ | 1.3818 | 0.6667 | 1 | 1.3490 |
155
+ | 1.3841 | 1.1667 | 2 | 1.3238 |
156
+
157
+
158
+ ### Framework versions
159
+
160
+ - PEFT 0.11.1
161
+ - Transformers 4.42.3
162
+ - Pytorch 2.3.0+cu121
163
+ - Datasets 2.19.1
164
+ - Tokenizers 0.19.1