Transformers
AImoney / README.md
mahdijnt's picture
update
b387864 verified
---
license: mit
datasets:
- stanfordnlp/imdb
- stanfordnlp/sst2
- Iliab/emotion_dataset
- fancyzhx/ag_news
- CogComp/trec
- microsoft/ms_marco
- CoIR-Retrieval/CodeSearchNet-go-queries-corpus
- CoIR-Retrieval/CodeSearchNet-ccr-javascript-queries-corpus
- KomeijiForce/CommonsenseQA-Explained-by-ChatGPT
- Skylion007/openwebtext
- takala/financial_phrasebank
language:
- fa
- en
- es
- ru
- de
metrics:
- accuracy
- precision
- f1
- recall
- roc_auc
- bleu
- rouge
- perplexity
- mse
library_name: transformers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
from datasets import load_dataset, load_metric
# بارگذاری مجموعه داده IMDB
dataset = load_dataset('imdb')
# بارگذاری معیارهای ارزیابی
accuracy_metric = load_metric('accuracy')
precision_metric = load_metric('precision')
recall_metric = load_metric('recall')
f1_metric = load_metric('f1')
# نمونه‌ای از نحوه استفاده از معیارهای ارزیابی
predictions = [0, 1, 1, 0] # پیش‌بینی‌ها
references = [0, 1, 0, 0] # مقادیر واقعی
accuracy = accuracy_metric.compute(predictions=predictions, references=references)
precision = precision_metric.compute(predictions=predictions, references=references)
recall = recall_metric.compute(predictions=predictions, references=references)
f1 = f1_metric.compute(predictions=predictions, references=references)
print(f"Accuracy: {accuracy['accuracy']}")
print(f"Precision: {precision['precision']}")
print(f"Recall: {recall['recall']}")
print(f"F1 Score: {f1['f1']}")
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
# بارگذاری مدل و tokenizer
model_name = "نام مدل آموزش‌دیده شما"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# ایجاد pipeline برای تحلیل احساسات
sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
# تحلیل احساسات یک متن
text = "I love using Hugging Face transformers!"
result = sentiment_analysis(text)
print(result)
from transformers import AutoModelForCausalLM
# بارگذاری مدل و tokenizer
model_name = "نام مدل آموزش‌دیده شما"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# ایجاد pipeline برای تولید متن
text_generation = pipeline("text-generation", model=model, tokenizer=tokenizer)
# تولید متن
prompt = "Once upon a time"
generated_text = text_generation(prompt, max_length=50)
print(generated_text)
from transformers import AutoModelForSeq2SeqLM
# بارگذاری مدل و tokenizer
model_name = "نام مدل آموزش‌دیده شما"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# ایجاد pipeline برای ترجمه
translation = pipeline("translation_en_to_fr", model=model, tokenizer=tokenizer)
# ترجمه یک متن
text = "How are you?"
translated_text = translation(text)
print(translated_text)
from transformers import AutoModelForQuestionAnswering
# بارگذاری مدل و tokenizer
model_name = "نام مدل آموزش‌دیده شما"
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# ایجاد pipeline برای پاسخ به سوالات
question_answering = pipeline("question-answering", model=model, tokenizer=tokenizer)
# پاسخ به یک سوال
context = "Hugging Face is creating a tool that democratizes AI."
question = "What is Hugging Face creating?"
answer = question_answering(question=question, context=context)
print(answer)
from flask import Flask, request, jsonify
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
app = Flask(__name__)
# بارگذاری مدل و tokenizer
model_name = "نام مدل آموزش‌دیده شما"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# ایجاد pipeline برای تحلیل احساسات
sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
@app.route('/analyze', methods=['POST'])
def analyze():
data = request.json
text = data['text']
result = sentiment_analysis(text)
return jsonify(result)
if __name__ == '__main__':
app.run(debug=True)