|
--- |
|
license: mit |
|
datasets: |
|
- stanfordnlp/imdb |
|
- stanfordnlp/sst2 |
|
- Iliab/emotion_dataset |
|
- fancyzhx/ag_news |
|
- CogComp/trec |
|
- microsoft/ms_marco |
|
- CoIR-Retrieval/CodeSearchNet-go-queries-corpus |
|
- CoIR-Retrieval/CodeSearchNet-ccr-javascript-queries-corpus |
|
- KomeijiForce/CommonsenseQA-Explained-by-ChatGPT |
|
- Skylion007/openwebtext |
|
- takala/financial_phrasebank |
|
language: |
|
- fa |
|
- en |
|
- es |
|
- ru |
|
- de |
|
metrics: |
|
- accuracy |
|
- precision |
|
- f1 |
|
- recall |
|
- roc_auc |
|
- bleu |
|
- rouge |
|
- perplexity |
|
- mse |
|
library_name: transformers |
|
--- |
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
|
|
|
|
- **Developed by:** [More Information Needed] |
|
- **Funded by [optional]:** [More Information Needed] |
|
- **Shared by [optional]:** [More Information Needed] |
|
- **Model type:** [More Information Needed] |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** [More Information Needed] |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [More Information Needed] |
|
- **Paper [optional]:** [More Information Needed] |
|
- **Demo [optional]:** [More Information Needed] |
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
### Direct Use |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
[More Information Needed] |
|
|
|
### Downstream Use [optional] |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
[More Information Needed] |
|
|
|
### Out-of-Scope Use |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
[More Information Needed] |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
[More Information Needed] |
|
|
|
### Recommendations |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
[More Information Needed] |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
|
|
[More Information Needed] |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
#### Preprocessing [optional] |
|
|
|
[More Information Needed] |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
[More Information Needed] |
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Dataset Card if possible. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Factors |
|
|
|
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
[More Information Needed] |
|
|
|
### Results |
|
|
|
[More Information Needed] |
|
|
|
#### Summary |
|
|
|
|
|
|
|
## Model Examination [optional] |
|
|
|
<!-- Relevant interpretability work for the model goes here --> |
|
|
|
[More Information Needed] |
|
|
|
## Environmental Impact |
|
|
|
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** [More Information Needed] |
|
- **Hours used:** [More Information Needed] |
|
- **Cloud Provider:** [More Information Needed] |
|
- **Compute Region:** [More Information Needed] |
|
- **Carbon Emitted:** [More Information Needed] |
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
[More Information Needed] |
|
|
|
### Compute Infrastructure |
|
|
|
[More Information Needed] |
|
|
|
#### Hardware |
|
|
|
[More Information Needed] |
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
[More Information Needed] |
|
|
|
## More Information [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
[More Information Needed] |
|
|
|
from datasets import load_dataset, load_metric |
|
|
|
# بارگذاری مجموعه داده IMDB |
|
dataset = load_dataset('imdb') |
|
|
|
# بارگذاری معیارهای ارزیابی |
|
accuracy_metric = load_metric('accuracy') |
|
precision_metric = load_metric('precision') |
|
recall_metric = load_metric('recall') |
|
f1_metric = load_metric('f1') |
|
|
|
# نمونهای از نحوه استفاده از معیارهای ارزیابی |
|
predictions = [0, 1, 1, 0] # پیشبینیها |
|
references = [0, 1, 0, 0] # مقادیر واقعی |
|
|
|
accuracy = accuracy_metric.compute(predictions=predictions, references=references) |
|
precision = precision_metric.compute(predictions=predictions, references=references) |
|
recall = recall_metric.compute(predictions=predictions, references=references) |
|
f1 = f1_metric.compute(predictions=predictions, references=references) |
|
|
|
print(f"Accuracy: {accuracy['accuracy']}") |
|
print(f"Precision: {precision['precision']}") |
|
print(f"Recall: {recall['recall']}") |
|
print(f"F1 Score: {f1['f1']}") |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline |
|
|
|
# بارگذاری مدل و tokenizer |
|
model_name = "نام مدل آموزشدیده شما" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
# ایجاد pipeline برای تحلیل احساسات |
|
sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) |
|
|
|
# تحلیل احساسات یک متن |
|
text = "I love using Hugging Face transformers!" |
|
result = sentiment_analysis(text) |
|
print(result) |
|
from transformers import AutoModelForCausalLM |
|
|
|
# بارگذاری مدل و tokenizer |
|
model_name = "نام مدل آموزشدیده شما" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
# ایجاد pipeline برای تولید متن |
|
text_generation = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
# تولید متن |
|
prompt = "Once upon a time" |
|
generated_text = text_generation(prompt, max_length=50) |
|
print(generated_text) |
|
from transformers import AutoModelForSeq2SeqLM |
|
|
|
# بارگذاری مدل و tokenizer |
|
model_name = "نام مدل آموزشدیده شما" |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
# ایجاد pipeline برای ترجمه |
|
translation = pipeline("translation_en_to_fr", model=model, tokenizer=tokenizer) |
|
|
|
# ترجمه یک متن |
|
text = "How are you?" |
|
translated_text = translation(text) |
|
print(translated_text) |
|
from transformers import AutoModelForQuestionAnswering |
|
|
|
# بارگذاری مدل و tokenizer |
|
model_name = "نام مدل آموزشدیده شما" |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
# ایجاد pipeline برای پاسخ به سوالات |
|
question_answering = pipeline("question-answering", model=model, tokenizer=tokenizer) |
|
|
|
# پاسخ به یک سوال |
|
context = "Hugging Face is creating a tool that democratizes AI." |
|
question = "What is Hugging Face creating?" |
|
answer = question_answering(question=question, context=context) |
|
print(answer) |
|
from flask import Flask, request, jsonify |
|
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
app = Flask(__name__) |
|
|
|
# بارگذاری مدل و tokenizer |
|
model_name = "نام مدل آموزشدیده شما" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
# ایجاد pipeline برای تحلیل احساسات |
|
sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) |
|
|
|
@app.route('/analyze', methods=['POST']) |
|
def analyze(): |
|
data = request.json |
|
text = data['text'] |
|
result = sentiment_analysis(text) |
|
return jsonify(result) |
|
|
|
if __name__ == '__main__': |
|
app.run(debug=True) |
|
|