bartpho-vietnews-sum
This model is a fine-tuned version of vinai/bartpho-word-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.3348
- Rouge1: 0.5983
- Rouge2: 0.2976
- Rougel: 0.4114
- Rougelsum: 0.4114
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
3.6491 | 0.3828 | 2000 | 3.5148 | 0.5802 | 0.2748 | 0.3923 | 0.3922 |
3.3865 | 0.7656 | 4000 | 3.4149 | 0.5888 | 0.2845 | 0.4010 | 0.4009 |
3.0592 | 1.1483 | 6000 | 3.3750 | 0.5923 | 0.2911 | 0.4055 | 0.4054 |
2.9393 | 1.5311 | 8000 | 3.3433 | 0.5915 | 0.2912 | 0.4067 | 0.4066 |
2.8404 | 1.9139 | 10000 | 3.3122 | 0.5952 | 0.2938 | 0.4082 | 0.4080 |
2.6108 | 2.2967 | 12000 | 3.3402 | 0.5964 | 0.2948 | 0.4086 | 0.4085 |
2.5911 | 2.6795 | 14000 | 3.3348 | 0.5983 | 0.2976 | 0.4114 | 0.4114 |
Framework versions
- Transformers 4.52.1
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for lyng148/bartpho-vietnews-sum
Base model
vinai/bartpho-word-base