SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5

This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the triplets and pairs datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/nomic-embed-text-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • triplets
    • pairs

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'search_query: makeup',
    'search_query: make up',
    'search_query: hyundai tucson rims',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.724
dot_accuracy 0.2849
manhattan_accuracy 0.7206
euclidean_accuracy 0.7224
max_accuracy 0.724

Semantic Similarity

Metric Value
pearson_cosine 0.5105
spearman_cosine 0.4916
pearson_manhattan 0.4556
spearman_manhattan 0.4447
pearson_euclidean 0.4572
spearman_euclidean 0.4466
pearson_dot 0.4938
spearman_dot 0.4819
pearson_max 0.5105
spearman_max 0.4916

Training Details

Training Datasets

triplets

  • Dataset: triplets
  • Size: 684,084 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 11.1 tokens
    • max: 22 tokens
    • min: 17 tokens
    • mean: 42.75 tokens
    • max: 95 tokens
    • min: 15 tokens
    • mean: 43.8 tokens
    • max: 127 tokens
  • Samples:
    anchor positive negative
    search_query: tarps heavy duty waterproof 8x10 search_document: 8' x 10' Super Heavy Duty 16 Mil Brown Poly Tarp Cover - Thick Waterproof, UV Resistant, Rip and Tear Proof Tarpaulin with Grommets and Reinforced Edges - by Xpose Safety, Xpose Safety, Brown search_document: Grillkid 6'X8' 4.5 Mil Thick General Purpose Waterproof Poly Tarp, Grillkid, All Purpose
    search_query: wireless keyboard without number pad search_document: Macally 2.4G Small Wireless Keyboard - Ergonomic & Comfortable Computer Keyboard - Compact Keyboard for Laptop or Windows PC Desktop, Tablet, Smart TV - Plug & Play Mini Keyboard with 12 Hot Keys, Macally, Black search_document: Wireless Keyboard - iClever GKA22S Rechargeable Keyboard with Number Pad, Full-Size Stainless Steel Ultra Slim Keyboard, 2.4G Stable Connection Wireless Keyboard for iMac, Mackbook, PC, Laptop, iClever, Silver
    search_query: geometry earrings search_document: Simple Stud Earrings for Women, Geometric Minimalist Stud Earring Set Tiny Circle Triangle Square Bar Stud Earrings Mini Cartilage Tragus Earrings, choice of all, B:Circle Sliver search_document: BONALUNA Bohemian Wood And Marble Effect Oblong Shaped Drop Statement Earrings (VIVID TURQUOISE), BONALUNA, VIVID TURQUOISE
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

pairs

  • Dataset: pairs
  • Size: 498,114 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 6.73 tokens
    • max: 33 tokens
    • min: 10 tokens
    • mean: 40.14 tokens
    • max: 98 tokens
    • min: 0.0
    • mean: 0.81
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    I would choose a medium weight waterproof fabric, hip length jacket or longer, long sleeves, zip front, with a hood and deep pockets with zips ZSHOW Men's Winter Hooded Packable Down Jacket(Blue, XX-Large), ZSHOW, Blue 1.0
    sequin dance costume girls Yeahdor Big Girls' Lyrical Latin Ballet Dance Costumes Dresses Halter Sequins Irregular Tutu Skirted Leotard Dancewear Pink 12-14, Yeahdor, Pink 1.0
    paint easel bulk Artecho Artist Easel Display Easel Stand, 2 Pack Metal Tripod Stand Easel for Painting, Hold Canvas from 21" to 66", Floor and Tabletop Displaying, Painting with Portable Bag, Artecho, Black 1.0
  • Loss: AnglELoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_angle_sim"
    }
    

Evaluation Datasets

triplets

  • Dataset: triplets
  • Size: 10,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 11.13 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 43.11 tokens
    • max: 107 tokens
    • min: 15 tokens
    • mean: 43.56 tokens
    • max: 99 tokens
  • Samples:
    anchor positive negative
    search_query: hitch fifth wheel search_document: ENIXWILL 5th Wheel Trailer Hitch Lifting Device Bracket Pin Fit for Hitch Companion and Patriot Series Hitch, ENIXWILL, Black search_document: ECOTRIC Fifth 5th Wheel Trailer Hitch Mount Rails and Installation Kits for Full-Size Trucks, ECOTRIC, black
    search_query: dek pro search_document: Cubiker Computer Desk 47 inch Home Office Writing Study Desk, Modern Simple Style Laptop Table with Storage Bag, Brown, Cubiker, Brown search_document: FEZIBO Dual Motor L Shaped Electric Standing Desk, 48 Inches Stand Up Corner Desk, Home Office Sit Stand Desk with Rustic Brown Top and Black Frame, FEZIBO, Rustic Brown
    search_query: 1 year baby mouth without teeth cleaner search_document: Baby Toothbrush,Infant Toothbrush,Baby Tongue Cleaner,Infant Toothbrush,Baby Tongue Cleaner Newborn,Toothbrush Tongue Cleaner Dental Care for 0-36 Month Baby,36 Pcs + Free 4 Pcs, Babycolor, Blue search_document: Slotic Baby Toothbrush for 0-2 Years, Safe and Sturdy, Toddler Oral Care Teether Brush, Extra Soft Bristle for Baby Teeth and Infant Gums, Dentist Recommended (4-Pack), Slotic, 4 Pack
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

pairs

  • Dataset: pairs
  • Size: 10,000 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 6.8 tokens
    • max: 34 tokens
    • min: 9 tokens
    • mean: 39.7 tokens
    • max: 101 tokens
    • min: 0.0
    • mean: 0.77
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    outdoor ceiling fans without light 44" Plaza Industrial Indoor Outdoor Ceiling Fan with Remote Control Oil Rubbed Bronze Damp Rated for Patio Porch - Casa Vieja, Casa Vieja, No Light Kit - Bronze 1.0
    bathroom cabinet Homfa Bathroom Floor Cabinet Free Standing with Single Door Multifunctional Bathroom Storage Organizer Toiletries(Ivory White), Homfa, White 1.0
    fitbit charge 3 TreasureMax Compatible with Fitbit Charge 2 Bands for Women/Men,Silicone Fadeless Pattern Printed Replacement Floral Bands for Fitbit Charge 2 HR Wristbands, TreasureMax, Paw 2 0.4
  • Loss: AnglELoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_angle_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 4
  • learning_rate: 1e-06
  • num_train_epochs: 5
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {'num_cycles': 4}
  • warmup_ratio: 0.01
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: 2
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • learning_rate: 1e-06
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {'num_cycles': 4}
  • warmup_ratio: 0.01
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: 2
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss pairs loss triplets loss cosine_accuracy spearman_cosine
0.0014 100 0.8207 - - - -
0.0027 200 0.9003 - - - -
0.0041 300 0.8379 - - - -
0.0054 400 0.815 - - - -
0.0068 500 0.8981 - - - -
0.0081 600 0.9957 - - - -
0.0095 700 0.8284 - - - -
0.0108 800 0.8095 - - - -
0.0122 900 0.9307 - - - -
0.0135 1000 0.9906 1.3590 0.6927 0.694 0.3576
0.0149 1100 0.8519 - - - -
0.0162 1200 0.738 - - - -
0.0176 1300 0.9221 - - - -
0.0189 1400 0.8652 - - - -
0.0203 1500 0.8599 - - - -
0.0217 1600 0.8376 - - - -
0.0230 1700 0.8015 - - - -
0.0244 1800 0.8402 - - - -
0.0257 1900 0.8278 - - - -
0.0271 2000 0.9169 1.2825 0.6685 0.6984 0.3827
0.0284 2100 0.8237 - - - -
0.0298 2200 0.6999 - - - -
0.0311 2300 0.8482 - - - -
0.0325 2400 0.7317 - - - -
0.0338 2500 0.8562 - - - -
0.0352 2600 0.7919 - - - -
0.0365 2700 0.8009 - - - -
0.0379 2800 0.7552 - - - -
0.0392 2900 0.8148 - - - -
0.0406 3000 0.7556 1.2029 0.6480 0.7064 0.4045
0.0420 3100 0.6813 - - - -
0.0433 3200 0.7406 - - - -
0.0447 3300 0.8198 - - - -
0.0460 3400 0.7842 - - - -
0.0474 3500 0.74 - - - -
0.0487 3600 0.7117 - - - -
0.0501 3700 0.7404 - - - -
0.0514 3800 0.6719 - - - -
0.0528 3900 0.6728 - - - -
0.0541 4000 0.7189 1.0997 0.6337 0.7146 0.4284
0.0555 4100 0.7812 - - - -
0.0568 4200 0.7474 - - - -
0.0582 4300 0.6556 - - - -
0.0596 4400 0.8303 - - - -
0.0609 4500 0.6796 - - - -
0.0623 4600 0.7077 - - - -
0.0636 4700 0.6863 - - - -
0.0650 4800 0.6756 - - - -
0.0663 4900 0.6955 - - - -
0.0677 5000 0.7199 1.0589 0.6257 0.7161 0.4426
0.0690 5100 0.6744 - - - -
0.0704 5200 0.7609 - - - -
0.0717 5300 0.6707 - - - -
0.0731 5400 0.6796 - - - -
0.0744 5500 0.6842 - - - -
0.0758 5600 0.7358 - - - -
0.0771 5700 0.7578 - - - -
0.0785 5800 0.6822 - - - -
0.0799 5900 0.6847 - - - -
0.0812 6000 0.7556 1.0383 0.6199 0.7168 0.4488
0.0826 6100 0.7013 - - - -
0.0839 6200 0.6728 - - - -
0.0853 6300 0.6418 - - - -
0.0866 6400 0.6918 - - - -
0.0880 6500 0.7399 - - - -
0.0893 6600 0.7896 - - - -
0.0907 6700 0.6771 - - - -
0.0920 6800 0.6429 - - - -
0.0934 6900 0.6806 - - - -
0.0947 7000 0.6931 1.0354 0.6176 0.7195 0.4561
0.0961 7100 0.7115 - - - -
0.0974 7200 0.6108 - - - -
0.0988 7300 0.6889 - - - -
0.1002 7400 0.6451 - - - -
0.1015 7500 0.6501 - - - -
0.1029 7600 0.699 - - - -
0.1042 7700 0.6624 - - - -
0.1056 7800 0.7075 - - - -
0.1069 7900 0.6789 - - - -
0.1083 8000 0.6572 1.0391 0.6183 0.7211 0.4544
0.1096 8100 0.6754 - - - -
0.1110 8200 0.6404 - - - -
0.1123 8300 0.6816 - - - -
0.1137 8400 0.6485 - - - -
0.1150 8500 0.6794 - - - -
0.1164 8600 0.693 - - - -
0.1177 8700 0.5798 - - - -
0.1191 8800 0.7063 - - - -
0.1205 8900 0.6192 - - - -
0.1218 9000 0.6889 1.0438 0.6175 0.7243 0.4580
0.1232 9100 0.6881 - - - -
0.1245 9200 0.6369 - - - -
0.1259 9300 0.6451 - - - -
0.1272 9400 0.644 - - - -
0.1286 9500 0.7059 - - - -
0.1299 9600 0.5983 - - - -
0.1313 9700 0.5935 - - - -
0.1326 9800 0.634 - - - -
0.1340 9900 0.6716 - - - -
0.1353 10000 0.6591 1.0213 0.6132 0.7231 0.4640
0.1367 10100 0.6886 - - - -
0.1380 10200 0.6133 - - - -
0.1394 10300 0.5871 - - - -
0.1408 10400 0.5949 - - - -
0.1421 10500 0.6356 - - - -
0.1435 10600 0.6379 - - - -
0.1448 10700 0.6288 - - - -
0.1462 10800 0.6732 - - - -
0.1475 10900 0.6515 - - - -
0.1489 11000 0.7013 1.0164 0.6123 0.7257 0.4629
0.1502 11100 0.5848 - - - -
0.1516 11200 0.5988 - - - -
0.1529 11300 0.7331 - - - -
0.1543 11400 0.6089 - - - -
0.1556 11500 0.6553 - - - -
0.1570 11600 0.654 - - - -
0.1583 11700 0.6509 - - - -
0.1597 11800 0.6187 - - - -
0.1611 11900 0.6448 - - - -
0.1624 12000 0.6775 1.0087 0.6137 0.7257 0.4687
0.1638 12100 0.5793 - - - -
0.1651 12200 0.6827 - - - -
0.1665 12300 0.6002 - - - -
0.1678 12400 0.583 - - - -
0.1692 12500 0.6342 - - - -
0.1705 12600 0.6378 - - - -
0.1719 12700 0.6008 - - - -
0.1732 12800 0.6778 - - - -
0.1746 12900 0.6637 - - - -
0.1759 13000 0.6419 1.0117 0.6126 0.7234 0.4705
0.1773 13100 0.663 - - - -
0.1787 13200 0.5404 - - - -
0.1800 13300 0.6427 - - - -
0.1814 13400 0.6907 - - - -
0.1827 13500 0.63 - - - -
0.1841 13600 0.6501 - - - -
0.1854 13700 0.6124 - - - -
0.1868 13800 0.6381 - - - -
0.1881 13900 0.6324 - - - -
0.1895 14000 0.6542 1.0119 0.6126 0.7253 0.4641
0.1908 14100 0.6292 - - - -
0.1922 14200 0.6214 - - - -
0.1935 14300 0.643 - - - -
0.1949 14400 0.6094 - - - -
0.1962 14500 0.5929 - - - -
0.1976 14600 0.7236 - - - -
0.1990 14700 0.5857 - - - -
0.2003 14800 0.7177 - - - -
0.2017 14900 0.6651 - - - -
0.2030 15000 0.6197 1.0012 0.6098 0.727 0.4724
0.2044 15100 0.6128 - - - -
0.2057 15200 0.6281 - - - -
0.2071 15300 0.7106 - - - -
0.2084 15400 0.6095 - - - -
0.2098 15500 0.5855 - - - -
0.2111 15600 0.6124 - - - -
0.2125 15700 0.6233 - - - -
0.2138 15800 0.6511 - - - -
0.2152 15900 0.5701 - - - -
0.2165 16000 0.6011 0.9990 0.6083 0.7261 0.4756
0.2179 16100 0.5907 - - - -
0.2193 16200 0.599 - - - -
0.2206 16300 0.5879 - - - -
0.2220 16400 0.5505 - - - -
0.2233 16500 0.721 - - - -
0.2247 16600 0.6972 - - - -
0.2260 16700 0.6147 - - - -
0.2274 16800 0.6147 - - - -
0.2287 16900 0.6217 - - - -
0.2301 17000 0.6048 1.0026 0.6097 0.7284 0.4700
0.2314 17100 0.6233 - - - -
0.2328 17200 0.5569 - - - -
0.2341 17300 0.6158 - - - -
0.2355 17400 0.6483 - - - -
0.2368 17500 0.5811 - - - -
0.2382 17600 0.5988 - - - -
0.2396 17700 0.5472 - - - -
0.2409 17800 0.515 - - - -
0.2423 17900 0.6188 - - - -
0.2436 18000 0.6179 1.0068 0.6109 0.727 0.4749
0.2450 18100 0.6492 - - - -
0.2463 18200 0.6303 - - - -
0.2477 18300 0.6875 - - - -
0.2490 18400 0.6421 - - - -
0.2504 18500 0.5463 - - - -
0.2517 18600 0.6061 - - - -
0.2531 18700 0.6271 - - - -
0.2544 18800 0.5899 - - - -
0.2558 18900 0.583 - - - -
0.2571 19000 0.5725 1.0107 0.6102 0.7282 0.4717
0.2585 19100 0.578 - - - -
0.2599 19200 0.649 - - - -
0.2612 19300 0.5673 - - - -
0.2626 19400 0.6736 - - - -
0.2639 19500 0.6257 - - - -
0.2653 19600 0.6759 - - - -
0.2666 19700 0.5767 - - - -
0.2680 19800 0.6644 - - - -
0.2693 19900 0.6232 - - - -
0.2707 20000 0.5403 1.0150 0.6096 0.7279 0.4799
0.2720 20100 0.6195 - - - -
0.2734 20200 0.6111 - - - -
0.2747 20300 0.6524 - - - -
0.2761 20400 0.5863 - - - -
0.2774 20500 0.5788 - - - -
0.2788 20600 0.5401 - - - -
0.2802 20700 0.6166 - - - -
0.2815 20800 0.5687 - - - -
0.2829 20900 0.6352 - - - -
0.2842 21000 0.6574 1.0086 0.6104 0.7291 0.4772
0.2856 21100 0.633 - - - -
0.2869 21200 0.6008 - - - -
0.2883 21300 0.5929 - - - -
0.2896 21400 0.6791 - - - -
0.2910 21500 0.6044 - - - -
0.2923 21600 0.5487 - - - -
0.2937 21700 0.5302 - - - -
0.2950 21800 0.5842 - - - -
0.2964 21900 0.5931 - - - -
0.2978 22000 0.5376 1.0130 0.6114 0.7292 0.4803
0.2991 22100 0.511 - - - -
0.3005 22200 0.5989 - - - -
0.3018 22300 0.6184 - - - -
0.3032 22400 0.5367 - - - -
0.3045 22500 0.6855 - - - -
0.3059 22600 0.6058 - - - -
0.3072 22700 0.582 - - - -
0.3086 22800 0.5601 - - - -
0.3099 22900 0.6476 - - - -
0.3113 23000 0.5905 1.0174 0.6103 0.7294 0.4818
0.3126 23100 0.6215 - - - -
0.3140 23200 0.5134 - - - -
0.3153 23300 0.5508 - - - -
0.3167 23400 0.5855 - - - -
0.3181 23500 0.604 - - - -
0.3194 23600 0.6711 - - - -
0.3208 23700 0.6602 - - - -
0.3221 23800 0.5083 - - - -
0.3235 23900 0.5928 - - - -
0.3248 24000 0.5756 1.0079 0.6117 0.7304 0.4850
0.3262 24100 0.5659 - - - -
0.3275 24200 0.5664 - - - -
0.3289 24300 0.5622 - - - -
0.3302 24400 0.6685 - - - -
0.3316 24500 0.5807 - - - -
0.3329 24600 0.5583 - - - -
0.3343 24700 0.5634 - - - -
0.3356 24800 0.6452 - - - -
0.3370 24900 0.5716 - - - -
0.3384 25000 0.5411 1.0043 0.6116 0.7289 0.4851
0.3397 25100 0.583 - - - -
0.3411 25200 0.5801 - - - -
0.3424 25300 0.52 - - - -
0.3438 25400 0.5882 - - - -
0.3451 25500 0.5788 - - - -
0.3465 25600 0.6031 - - - -
0.3478 25700 0.5806 - - - -
0.3492 25800 0.541 - - - -
0.3505 25900 0.6236 - - - -
0.3519 26000 0.5642 1.0042 0.6124 0.7283 0.4798
0.3532 26100 0.5681 - - - -
0.3546 26200 0.5849 - - - -
0.3559 26300 0.5879 - - - -
0.3573 26400 0.5634 - - - -
0.3587 26500 0.5681 - - - -
0.3600 26600 0.6432 - - - -
0.3614 26700 0.5447 - - - -
0.3627 26800 0.5574 - - - -
0.3641 26900 0.5698 - - - -
0.3654 27000 0.6691 1.0087 0.6126 0.7286 0.4829
0.3668 27100 0.6235 - - - -
0.3681 27200 0.5478 - - - -
0.3695 27300 0.586 - - - -
0.3708 27400 0.5454 - - - -
0.3722 27500 0.5608 - - - -
0.3735 27600 0.6274 - - - -
0.3749 27700 0.5939 - - - -
0.3762 27800 0.5673 - - - -
0.3776 27900 0.5784 - - - -
0.3790 28000 0.6069 1.0183 0.6126 0.7295 0.4798
0.3803 28100 0.5733 - - - -
0.3817 28200 0.6075 - - - -
0.3830 28300 0.5933 - - - -
0.3844 28400 0.5907 - - - -
0.3857 28500 0.5869 - - - -
0.3871 28600 0.5781 - - - -
0.3884 28700 0.6056 - - - -
0.3898 28800 0.5676 - - - -
0.3911 28900 0.5997 - - - -
0.3925 29000 0.5936 1.0096 0.6135 0.7269 0.4866
0.3938 29100 0.5261 - - - -
0.3952 29200 0.53 - - - -
0.3966 29300 0.5153 - - - -
0.3979 29400 0.5161 - - - -
0.3993 29500 0.5723 - - - -
0.4006 29600 0.6247 - - - -
0.4020 29700 0.5521 - - - -
0.4033 29800 0.5528 - - - -
0.4047 29900 0.5917 - - - -
0.4060 30000 0.5267 1.0133 0.6117 0.7258 0.4869
0.4074 30100 0.6074 - - - -
0.4087 30200 0.5774 - - - -
0.4101 30300 0.5645 - - - -
0.4114 30400 0.5908 - - - -
0.4128 30500 0.5364 - - - -
0.4141 30600 0.5945 - - - -
0.4155 30700 0.5497 - - - -
0.4169 30800 0.5291 - - - -
0.4182 30900 0.5701 - - - -
0.4196 31000 0.5788 1.0041 0.6143 0.727 0.4870
0.4209 31100 0.6269 - - - -
0.4223 31200 0.4914 - - - -
0.4236 31300 0.5144 - - - -
0.4250 31400 0.6026 - - - -
0.4263 31500 0.5646 - - - -
0.4277 31600 0.6424 - - - -
0.4290 31700 0.5755 - - - -
0.4304 31800 0.5646 - - - -
0.4317 31900 0.573 - - - -
0.4331 32000 0.5648 1.0000 0.6133 0.7258 0.4867
0.4344 32100 0.5113 - - - -
0.4358 32200 0.5836 - - - -
0.4372 32300 0.6013 - - - -
0.4385 32400 0.5698 - - - -
0.4399 32500 0.5731 - - - -
0.4412 32600 0.489 - - - -
0.4426 32700 0.5728 - - - -
0.4439 32800 0.4829 - - - -
0.4453 32900 0.5783 - - - -
0.4466 33000 0.6191 1.0009 0.6162 0.7239 0.4863
0.4480 33100 0.5383 - - - -
0.4493 33200 0.5611 - - - -
0.4507 33300 0.5346 - - - -
0.4520 33400 0.5451 - - - -
0.4534 33500 0.5719 - - - -
0.4547 33600 0.5272 - - - -
0.4561 33700 0.5747 - - - -
0.4575 33800 0.509 - - - -
0.4588 33900 0.5746 - - - -
0.4602 34000 0.5873 0.9978 0.6142 0.7257 0.4914
0.4615 34100 0.5948 - - - -
0.4629 34200 0.5344 - - - -
0.4642 34300 0.5398 - - - -
0.4656 34400 0.6095 - - - -
0.4669 34500 0.5878 - - - -
0.4683 34600 0.5372 - - - -
0.4696 34700 0.5113 - - - -
0.4710 34800 0.5675 - - - -
0.4723 34900 0.5268 - - - -
0.4737 35000 0.4527 1.0195 0.6185 0.7254 0.4918
0.4750 35100 0.5625 - - - -
0.4764 35200 0.5786 - - - -
0.4778 35300 0.5327 - - - -
0.4791 35400 0.568 - - - -
0.4805 35500 0.5652 - - - -
0.4818 35600 0.61 - - - -
0.4832 35700 0.604 - - - -
0.4845 35800 0.6238 - - - -
0.4859 35900 0.5492 - - - -
0.4872 36000 0.5459 1.0140 0.6201 0.7237 0.4877
0.4886 36100 0.5833 - - - -
0.4899 36200 0.5663 - - - -
0.4913 36300 0.5248 - - - -
0.4926 36400 0.5352 - - - -
0.4940 36500 0.5271 - - - -
0.4953 36600 0.5142 - - - -
0.4967 36700 0.5173 - - - -
0.4981 36800 0.6029 - - - -
0.4994 36900 0.5732 - - - -
0.5008 37000 0.5887 1.0166 0.6182 0.7276 0.4938
0.5021 37100 0.529 - - - -
0.5035 37200 0.6251 - - - -
0.5048 37300 0.4641 - - - -
0.5062 37400 0.5818 - - - -
0.5075 37500 0.6206 - - - -
0.5089 37600 0.4771 - - - -
0.5102 37700 0.5578 - - - -
0.5116 37800 0.5857 - - - -
0.5129 37900 0.5658 - - - -
0.5143 38000 0.5514 1.0124 0.6188 0.727 0.4904
0.5157 38100 0.5092 - - - -
0.5170 38200 0.5495 - - - -
0.5184 38300 0.5263 - - - -
0.5197 38400 0.5399 - - - -
0.5211 38500 0.5643 - - - -
0.5224 38600 0.5608 - - - -
0.5238 38700 0.4812 - - - -
0.5251 38800 0.4792 - - - -
0.5265 38900 0.5185 - - - -
0.5278 39000 0.4966 1.0211 0.6196 0.7251 0.4902
0.5292 39100 0.6323 - - - -
0.5305 39200 0.4468 - - - -
0.5319 39300 0.6048 - - - -
0.5332 39400 0.4753 - - - -
0.5346 39500 0.5749 - - - -
0.5360 39600 0.5466 - - - -
0.5373 39700 0.5235 - - - -
0.5387 39800 0.5608 - - - -
0.5400 39900 0.5072 - - - -
0.5414 40000 0.5574 1.0107 0.6220 0.7272 0.4924
0.5427 40100 0.5694 - - - -
0.5441 40200 0.5462 - - - -
0.5454 40300 0.6253 - - - -
0.5468 40400 0.5736 - - - -
0.5481 40500 0.5225 - - - -
0.5495 40600 0.5313 - - - -
0.5508 40700 0.4789 - - - -
0.5522 40800 0.5424 - - - -
0.5535 40900 0.5282 - - - -
0.5549 41000 0.4923 1.0111 0.6215 0.7258 0.4906
0.5563 41100 0.5614 - - - -
0.5576 41200 0.552 - - - -
0.5590 41300 0.5455 - - - -
0.5603 41400 0.5593 - - - -
0.5617 41500 0.527 - - - -
0.5630 41600 0.5886 - - - -
0.5644 41700 0.5066 - - - -
0.5657 41800 0.6026 - - - -
0.5671 41900 0.5673 - - - -
0.5684 42000 0.5392 1.0095 0.6220 0.7261 0.4906
0.5698 42100 0.5483 - - - -
0.5711 42200 0.5596 - - - -
0.5725 42300 0.5462 - - - -
0.5738 42400 0.495 - - - -
0.5752 42500 0.4769 - - - -
0.5766 42600 0.6079 - - - -
0.5779 42700 0.5764 - - - -
0.5793 42800 0.5553 - - - -
0.5806 42900 0.4955 - - - -
0.5820 43000 0.568 1.0159 0.6221 0.7276 0.4926
0.5833 43100 0.4474 - - - -
0.5847 43200 0.5976 - - - -
0.5860 43300 0.5831 - - - -
0.5874 43400 0.4641 - - - -
0.5887 43500 0.5126 - - - -
0.5901 43600 0.5044 - - - -
0.5914 43700 0.5308 - - - -
0.5928 43800 0.5399 - - - -
0.5941 43900 0.5638 - - - -
0.5955 44000 0.5718 1.0135 0.6226 0.7268 0.4925
0.5969 44100 0.4601 - - - -
0.5982 44200 0.5542 - - - -
0.5996 44300 0.5645 - - - -
0.6009 44400 0.5284 - - - -
0.6023 44500 0.5632 - - - -
0.6036 44600 0.4867 - - - -
0.6050 44700 0.5773 - - - -
0.6063 44800 0.4619 - - - -
0.6077 44900 0.5044 - - - -
0.6090 45000 0.5379 1.0204 0.6268 0.7246 0.4889
0.6104 45100 0.4914 - - - -
0.6117 45200 0.5678 - - - -
0.6131 45300 0.5516 - - - -
0.6144 45400 0.5519 - - - -
0.6158 45500 0.4939 - - - -
0.6172 45600 0.4991 - - - -
0.6185 45700 0.4988 - - - -
0.6199 45800 0.5275 - - - -
0.6212 45900 0.51 - - - -
0.6226 46000 0.5478 1.0193 0.6250 0.726 0.4880
0.6239 46100 0.532 - - - -
0.6253 46200 0.5847 - - - -
0.6266 46300 0.5285 - - - -
0.6280 46400 0.4651 - - - -
0.6293 46500 0.5035 - - - -
0.6307 46600 0.6693 - - - -
0.6320 46700 0.4864 - - - -
0.6334 46800 0.5401 - - - -
0.6348 46900 0.5968 - - - -
0.6361 47000 0.5339 1.0217 0.6255 0.7261 0.4912
0.6375 47100 0.5183 - - - -
0.6388 47200 0.4989 - - - -
0.6402 47300 0.5263 - - - -
0.6415 47400 0.4698 - - - -
0.6429 47500 0.5878 - - - -
0.6442 47600 0.5186 - - - -
0.6456 47700 0.4365 - - - -
0.6469 47800 0.5596 - - - -
0.6483 47900 0.4989 - - - -
0.6496 48000 0.4629 1.0253 0.6279 0.7267 0.4903
0.6510 48100 0.4798 - - - -
0.6523 48200 0.541 - - - -
0.6537 48300 0.4916 - - - -
0.6551 48400 0.5228 - - - -
0.6564 48500 0.5612 - - - -
0.6578 48600 0.4756 - - - -
0.6591 48700 0.4542 - - - -
0.6605 48800 0.5226 - - - -
0.6618 48900 0.4651 - - - -
0.6632 49000 0.5673 1.0208 0.6264 0.7259 0.4934
0.6645 49100 0.6201 - - - -
0.6659 49200 0.5079 - - - -
0.6672 49300 0.5184 - - - -
0.6686 49400 0.4925 - - - -
0.6699 49500 0.5116 - - - -
0.6713 49600 0.5157 - - - -
0.6726 49700 0.5521 - - - -
0.6740 49800 0.5871 - - - -
0.6754 49900 0.5028 - - - -
0.6767 50000 0.4776 1.0173 0.6305 0.724 0.4916

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.0
  • Transformers: 4.38.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.27.2
  • Datasets: 2.19.1
  • Tokenizers: 0.15.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CachedMultipleNegativesRankingLoss

@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, 
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

AnglELoss

@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings}, 
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
14
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lv12/esci-nomic-embed-text-v1_5_3

Finetuned
(18)
this model

Evaluation results