Fine-tune 資訊
- 原始模型:
openai/whisper-small
- 使用音訊數量: 75478
- 使用音訊總長: 42.33 小時
- 音訊平均長度: 2.02 秒
- GPU:
NVIDIA H100 PCIe
x 1 - 訓練時間: 01:31:25
- 模型大小: 0.90 GB
- 訓練參數:
- batch size: 32
- eval batch size: 16
- gradient checkpointing: False
- fp16: False
- bf16: True
Fine-tuned Whisper model for Legislative Yuan of Taiwan
This model is a fine-tuned version of openai/whisper-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0246
- Wer: 82.9641
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 125
- training_steps: 1250
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0284 | 0.1060 | 250 | 0.0274 | 85.1458 |
0.0308 | 0.2120 | 500 | 0.0260 | 84.2204 |
0.0208 | 0.3179 | 750 | 0.0253 | 83.7457 |
0.0265 | 0.4239 | 1000 | 0.0248 | 83.0504 |
0.0254 | 0.5299 | 1250 | 0.0246 | 82.9641 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for luyotw/openfun-ivod-whisper-small-negotiation-10-125
Base model
openai/whisper-small