Fine-tune 資訊
- 原始模型:
openai/whisper-medium
- 使用音訊數量: 111244
- 使用音訊總長: 67.66 小時
- 音訊平均長度: 2.19 秒
- GPU:
NVIDIA H100 PCIe
x 1 - 訓練時間: 04:50:41
- 模型大小: 2.85 GB
- 訓練參數:
- batch size: 20
- eval batch size: 10
- gradient checkpointing: False
- fp16: False
- bf16: True
Fine-tuned Whisper model for Legislative Yuan of Taiwan
This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0197
- Wer: 75.1993
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 10
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0212 | 0.0719 | 400 | 0.0224 | 78.0550 |
0.0211 | 0.1438 | 800 | 0.0213 | 77.1936 |
0.0194 | 0.2157 | 1200 | 0.0205 | 75.9496 |
0.0192 | 0.2876 | 1600 | 0.0200 | 75.6781 |
0.018 | 0.3595 | 2000 | 0.0197 | 75.1993 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for luyotw/openfun-ivod-whisper-medium-common-11-626
Base model
openai/whisper-medium