Fine-tune 資訊

  • 原始模型: openai/whisper-medium
  • 使用音訊數量: 202505
  • 使用音訊總長: 122.56 小時
  • 音訊平均長度: 2.18 秒
  • GPU: NVIDIA H100 PCIe x 1
  • 訓練時間: 06:56:24
  • 模型大小: 2.85 GB
  • 訓練參數:
    • batch size: 20
    • eval batch size: 10
    • gradient checkpointing: False
    • fp16: False
    • bf16: True

Fine-tuned Whisper model for Legislative Yuan of Taiwan

This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0186
  • Wer: 72.0408

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 20
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0228 0.0395 400 0.0211 74.9866
0.0201 0.0790 800 0.0201 74.2709
0.0196 0.1185 1200 0.0194 72.9968
0.0182 0.1580 1600 0.0190 72.7167
0.0195 0.1975 2000 0.0186 72.0408

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for luyotw/openfun-ivod-whisper-medium-common-11-1200

Finetuned
(672)
this model