Fine-tune 資訊
- 原始模型:
openai/whisper-medium
- 使用音訊數量: 118922
- 使用音訊總長: 70.50 小時
- 音訊平均長度: 2.13 秒
- GPU:
NVIDIA H100 PCIe
x 1 - 訓練時間: 03:34:57
- 模型大小: 2.85 GB
- 訓練參數:
- batch size: 16
- eval batch size: 8
- gradient checkpointing: False
- fp16: False
- bf16: True
Fine-tuned Whisper model for Legislative Yuan of Taiwan
This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0192
- Wer: 73.8276
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0227 | 0.0673 | 500 | 0.0218 | 76.7862 |
0.0222 | 0.1345 | 1000 | 0.0209 | 75.9748 |
0.0217 | 0.2018 | 1500 | 0.0201 | 75.5901 |
0.0206 | 0.2691 | 2000 | 0.0195 | 74.2298 |
0.0187 | 0.3363 | 2500 | 0.0192 | 73.8276 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for luyotw/openfun-ivod-whisper-medium-common-10-626
Base model
openai/whisper-medium