Fine-tune 資訊
- 原始模型:
openai/whisper-large-v3
- 使用音訊數量: 17696
- 使用音訊總長: 9.42 小時
- 音訊平均長度: 1.92 秒
- GPU:
NVIDIA H100 PCIe
x 1 - 訓練時間: 02:08:15
- 模型大小: 5.75 GB
- 訓練參數:
- batch size: 80
- eval batch size: 40
- gradient checkpointing: True
- fp16: False
- bf16: True
Fine-tuned Whisper model for Legislative Yuan of Taiwan
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0235
- Wer: 78.2926
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 80
- eval_batch_size: 40
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0235 | 0.4505 | 100 | 0.0248 | 80.4383 |
0.0178 | 0.9009 | 200 | 0.0237 | 78.6807 |
0.0156 | 1.3514 | 300 | 0.0236 | 78.7948 |
0.0173 | 1.8018 | 400 | 0.0234 | 78.4068 |
0.0121 | 2.2523 | 500 | 0.0235 | 78.2926 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for luyotw/openfun-ivod-whisper-large-v3-LaiShiBao-10-104
Base model
openai/whisper-large-v3