Fine-tune 資訊

  • 原始模型: openai/whisper-large-v3
  • 使用音訊數量: 11813
  • 使用音訊總長: 5.86 小時
  • 音訊平均長度: 1.79 秒
  • GPU: NVIDIA H100 PCIe x 1
  • 訓練時間: 01:53:45
  • 模型大小: 5.75 GB
  • 訓練參數:
    • batch size: 80
    • eval batch size: 40
    • gradient checkpointing: True
    • fp16: False
    • bf16: True

Fine-tuned Whisper model for Legislative Yuan of Taiwan

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0223
  • Wer: 75.3301

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 80
  • eval_batch_size: 40
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Wer
0.0219 0.6757 100 0.0216 75.3863
0.0147 1.3514 200 0.0212 74.3467
0.0136 2.0270 300 0.0208 74.8806
0.0118 2.7027 400 0.0217 74.9368
0.0093 3.3784 500 0.0223 75.3301

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for luyotw/openfun-ivod-whisper-large-v3-KeZhiEn-11-55

Finetuned
(599)
this model