Fine-tune 資訊
- 原始模型:
openai/whisper-large-v3
- 使用音訊數量: 11813
- 使用音訊總長: 5.86 小時
- 音訊平均長度: 1.79 秒
- GPU:
NVIDIA H100 PCIe
x 1 - 訓練時間: 01:53:45
- 模型大小: 5.75 GB
- 訓練參數:
- batch size: 80
- eval batch size: 40
- gradient checkpointing: True
- fp16: False
- bf16: True
Fine-tuned Whisper model for Legislative Yuan of Taiwan
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0223
- Wer: 75.3301
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 80
- eval_batch_size: 40
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0219 | 0.6757 | 100 | 0.0216 | 75.3863 |
0.0147 | 1.3514 | 200 | 0.0212 | 74.3467 |
0.0136 | 2.0270 | 300 | 0.0208 | 74.8806 |
0.0118 | 2.7027 | 400 | 0.0217 | 74.9368 |
0.0093 | 3.3784 | 500 | 0.0223 | 75.3301 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for luyotw/openfun-ivod-whisper-large-v3-KeZhiEn-11-55
Base model
openai/whisper-large-v3