NorBERT 4 xlarge

The fourth generation of NorBERT models mainly improves their efficiency, but also performance and flexibility.

  • Made to encode long texts: these models were trained on 16384-token-long texts, the sliding-window attention can then generalize to even longer sequences.
  • Fast and memory-efficient training and inference: using FlashAttention2 with unpadding, the new generation of NorBERT models can process the long texts with ease.
  • Better performance: better quality of training corpora and carefully tuned training settings leads to an improved performance over NorBERT 3.
  • BERT as well as GPT: the models can flexibly function as both bidirectional encoders (BERT) or unidirectional decoders (GPT), which makes them very flexible to any downstream use.
  • Trained from scratch: the model is trained from scratch on 600B tokens of Norwegian Bokmål, Nynorsk and Northern Sámi. We used the HPLT 2.0 corpus, FineWeb2 and Mímir Core.
  • Permissable license: the checkpoints are distributed freely under Apache 2.0, anyone can use our models.

We recommend installing Flash Attention 2 and torch.compile-ing your models to get the highest training and inference efficiency.

All sizes of the NorBERT4 family:

Example usage (bidirectional encoding)

This model currently needs a custom wrapper from modeling_norbert.py, you should therefore load the model with trust_remote_code=True.

import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM

# Import model
tokenizer = AutoTokenizer.from_pretrained(
    "ltg/norbert4-xlarge"
)
model = AutoModelForMaskedLM.from_pretrained(
    "ltg/norbert4-xlarge",
    trust_remote_code=True
)

# Tokenize text (with a mask token inside)
input_text = tokenizer(
    f"Nå ønsker de seg en{tokenizer.mask_token} bolig.",
    return_tensors="pt"
)

# Inference
with torch.inference_mode:
    output_p = model(**input_text)

# Unmask the text
output_text = torch.where(
    input_text.input_ids == tokenizer.mask_token_id,
    output_p.logits.argmax(-1),
    input_text.input_ids
)

# Decoding; should output: '<s>Nå ønsker de seg en ny bolig.'
print(tokenizer.decode(output_text[0].tolist()))

Example usage (text generation)

NorBERT now also supports unidirectional text decoding, it can generate text like any other GPT model:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Import model
tokenizer = AutoTokenizer.from_pretrained(
    "ltg/norbert4-xlarge"
)
model = AutoModelForCausalLM.from_pretrained(
    "ltg/norbert4-xlarge",
    trust_remote_code=True
)

# Define zero-shot translation prompt template
prompt = """Engelsk: {0}
Bokmål:"""

# Define tokens that should end the generation (any token with a newline)
eos_token_ids = [
    token_id
    for token_id in range(tokenizer.vocab_size)
    if '\n' in tokenizer.decode([token_id])
]

# Generation function
@torch.inference_mode()
def generate(text):
    text = prompt.format(text)
    input_ids = tokenizer(text, return_tensors='pt').input_ids
    prediction = model.generate(
        input_ids,
        max_new_tokens=64,
        do_sample=False,
        eos_token_id=eos_token_ids
    )
    return tokenizer.decode(prediction[0, input_ids.size(1):]).strip()

# Example usage
generate("I'm a model that can generate text!")

The following classes are currently implemented: AutoModel, AutoModelMaskedLM, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForQuestionAnswering and AutoModeltForMultipleChoice.

Contact

David Samuel: [email protected]

Cite us

@inproceedings{charpentier-samuel-2024-bert,
    title = "{GPT} or {BERT}: why not both?",
    author = "Charpentier, Lucas Georges Gabriel  and
      Samuel, David",
    booktitle = "The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning",
    month = nov,
    year = "2024",
    address = "Miami, FL, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.conll-babylm.24/",
    pages = "262--283"
}
@inproceedings{samuel-etal-2023-norbench,
    title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models",
    author = "Samuel, David  and
      Kutuzov, Andrey  and
      Touileb, Samia  and
      Velldal, Erik  and
      {\O}vrelid, Lilja  and
      R{\o}nningstad, Egil  and
      Sigdel, Elina  and
      Palatkina, Anna",
    booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)",
    month = may,
    year = "2023",
    address = "T{\'o}rshavn, Faroe Islands",
    publisher = "University of Tartu Library",
    url = "https://aclanthology.org/2023.nodalida-1.61",
    pages = "618--633"
}
Downloads last month
86
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including ltg/norbert4-xlarge