See axolotl config
axolotl version: 0.4.1
base_model: google/gemma-2-9b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: gemma
datasets:
- path: /home/peterjin/mnt/axolotl_train/nq_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl
ds_type: json
type: chat_template
chat_template: gemma
field_messages: messages
message_field_role: role
message_field_content: content
roles:
user:
- user
assistant:
- assistant
- path: /home/peterjin/mnt/axolotl_train/mmlu_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl
ds_type: json
type: chat_template
chat_template: gemma
field_messages: messages
message_field_role: role
message_field_content: content
roles:
user:
- user
assistant:
- assistant
- path: /home/peterjin/mnt/axolotl_train/wow_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl
ds_type: json
type: chat_template
chat_template: gemma
field_messages: messages
message_field_role: role
message_field_content: content
roles:
user:
- user
assistant:
- assistant
- path: /home/peterjin/mnt/axolotl_train/fever_train/e5/gemma2-9B-chat/train_rationale_12500.jsonl
ds_type: json
type: chat_template
chat_template: gemma
field_messages: messages
message_field_role: role
message_field_content: content
roles:
user:
- user
assistant:
- assistant
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: /home/peterjin/axolotl_output/nq_mmlu_wow_fever_50000_rationale-e5-gemma2-9b-epoch4-lr1e-6-new
sequence_len: 8192 # 24576 can be supported by 8 h100s
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: RAG-tune-llm
wandb_entity: uiuc-dmg
wandb_watch:
wandb_name: nq_mmlu_wow_fever_50000_rationale-e5-gemma2-9b-epoch4-lr1e-6-new
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: false
sdp_attention: false
s2_attention: false
eager_attention: true
warmup_ratio: 0.05
evals_per_epoch: 1
eval_table_size:
saves_per_epoch: 1
save_total_limit: 10
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
home/peterjin/axolotl_output/nq_mmlu_wow_fever_50000_rationale-e5-gemma2-9b-epoch4-lr1e-6-new
This model is a fine-tuned version of google/gemma-2-9b on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 148
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3349 | 0.0013 | 1 | nan |
0.623 | 0.9990 | 741 | nan |
0.5101 | 1.9980 | 1482 | nan |
0.3635 | 2.9970 | 2223 | nan |
0.2928 | 3.9960 | 2964 | nan |
Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.3.1
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for longRAG/gemma2-9b-longragft-reasoning
Base model
google/gemma-2-9b