|
--- |
|
language: |
|
- en |
|
tags: |
|
- pytorch |
|
- causal-lm |
|
- pythia |
|
license: apache-2.0 |
|
datasets: |
|
- Anthropic/hh-rlhf |
|
--- |
|
|
|
[Pythia-1.4b](https://huggingface.co/EleutherAI/pythia-1.4b) DPO finetuned using original DPO code with the helpful subset of [Anthropic-hh-rlhf dataset](https://huggingface.co/datasets/Anthropic/hh-rlhf) for 1 epoch. |
|
|
|
Checkpoints are also uploaded. |
|
|
|
Fully reproducible finetuning code is available on [GitHub](https://github.com/lauraaisling/direct-preference-optimization/tree/main) |
|
|
|
[wandb log](https://wandb.ai/lauraomahony999/pythia-dpo/runs/cn14yuod) |
|
|
|
See [Pythia-1.4b](https://huggingface.co/EleutherAI/pythia-1.4b) for model details [(paper)](https://arxiv.org/abs/2101.00027). |
|
|
|
See further details of these models in the paper [Attributing Mode Collapse in the Fine-Tuning of Large Language Models](https://openreview.net/pdf?id=3pDMYjpOxk). |
|
|
|
You can cite these models if they are helpful as follows: |
|
|
|
<pre> |
|
@inproceedings{o2024attributing, |
|
title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models}, |
|
author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella}, |
|
booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop}, |
|
year={2024} |
|
} |
|
</pre> |
|
|
|
hf (pretrained=lomahony/pythia-1.4b-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16 |
|
| Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |
|
|--------------|------:|------|-----:|---------------|------:|---|------| |
|
|arc_challenge | 1|none | 0|acc | 0.2816|± |0.0131| |
|
| | |none | 0|acc_norm | 0.3123|± |0.0135| |
|
|arc_easy | 1|none | 0|acc | 0.6229|± |0.0099| |
|
| | |none | 0|acc_norm | 0.5459|± |0.0102| |
|
|boolq | 2|none | 0|acc | 0.6229|± |0.0085| |
|
|hellaswag | 1|none | 0|acc | 0.4191|± |0.0049| |
|
| | |none | 0|acc_norm | 0.5383|± |0.0050| |
|
|lambada_openai| 1|none | 0|perplexity | 6.4790|± |0.1947| |
|
| | |none | 0|acc | 0.5674|± |0.0069| |
|
|openbookqa | 1|none | 0|acc | 0.2280|± |0.0188| |
|
| | |none | 0|acc_norm | 0.3360|± |0.0211| |
|
|piqa | 1|none | 0|acc | 0.7122|± |0.0106| |
|
| | |none | 0|acc_norm | 0.7214|± |0.0105| |
|
|sciq | 1|none | 0|acc | 0.8480|± |0.0114| |
|
| | |none | 0|acc_norm | 0.7840|± |0.0130| |
|
|wikitext | 2|none | 0|word_perplexity|16.4022|± |N/A | |
|
| | |none | 0|byte_perplexity| 1.6873|± |N/A | |
|
| | |none | 0|bits_per_byte | 0.7547|± |N/A | |
|
|winogrande | 1|none | 0|acc | 0.5959|± |0.0138| |
|
|
|
hf (pretrained=lomahony/pythia-1.4b-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16 |
|
| Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |
|
|--------------|------:|------|-----:|---------------|------:|---|------| |
|
|arc_challenge | 1|none | 5|acc | 0.3089|± |0.0135| |
|
| | |none | 5|acc_norm | 0.3353|± |0.0138| |
|
|arc_easy | 1|none | 5|acc | 0.6423|± |0.0098| |
|
| | |none | 5|acc_norm | 0.6334|± |0.0099| |
|
|boolq | 2|none | 5|acc | 0.6291|± |0.0084| |
|
|hellaswag | 1|none | 5|acc | 0.4124|± |0.0049| |
|
| | |none | 5|acc_norm | 0.5347|± |0.0050| |
|
|lambada_openai| 1|none | 5|perplexity | 9.7688|± |0.3083| |
|
| | |none | 5|acc | 0.4904|± |0.0070| |
|
|openbookqa | 1|none | 5|acc | 0.2260|± |0.0187| |
|
| | |none | 5|acc_norm | 0.3240|± |0.0210| |
|
|piqa | 1|none | 5|acc | 0.7095|± |0.0106| |
|
| | |none | 5|acc_norm | 0.7165|± |0.0105| |
|
|sciq | 1|none | 5|acc | 0.9140|± |0.0089| |
|
| | |none | 5|acc_norm | 0.9050|± |0.0093| |
|
|wikitext | 2|none | 5|word_perplexity|16.4022|± |N/A | |
|
| | |none | 5|byte_perplexity| 1.6873|± |N/A | |
|
| | |none | 5|bits_per_byte | 0.7547|± |N/A | |
|
|winogrande | 1|none | 5|acc | 0.5612|± |0.0139| |
|
|