Text Generation
Transformers
llama
Inference Endpoints
x0001's picture
Duplicate from localmodels/LLM
feeb56d
|
raw
history blame
7.24 kB
metadata
duplicated_from: localmodels/LLM

Orca Mini v2 13B GPTQ

From: https://huggingface.co/psmathur/orca_mini_v2_13b

Prompt template

### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.

### User:
{prompt}

### Input:
{input}

### Response:

Model Bits Group Size Act Order (desc_act) File Size ExLlama Compatible? Made With Description
orca_mini_v2_13b-GPTQ-4bit-128g.no-act.order 4 128 False 7.45 GB True GPTQ-for-LLaMa Most compatible. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa.

Orca Mini v2 13B

An Uncensored LLaMA-13b model in collaboration with Eric Hartford. trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches.

Please note this model has better code generation capabilities compare to our original orca_mini_13b which was trained on base OpenLLaMA-13b model and which has the empty spaces issues & found not good for code generation.

Evaluation

I evaluated orca_mini_v2_13b on a wide range of tasks using Language Model Evaluation Harness from EleutherAI.

Here are the results on metrics used by HuggingFaceH4 Open LLM Leaderboard

Task Value Stderr
arc_challenge 0.5478 0.0145
hellaswag 0.7023 0.0040
mmlu 0.4969 0.035
truthfulqa_mc 0.44 0.0158
Total Average 0.54675 0.0114

Dataset

We used uncensored script on top of the previous explain tuned datasets we build which are WizardLM dataset ~70K, Alpaca dataset ~52K & Dolly-V2 dataset ~15K created using approaches from Orca Research Paper.

We leverage all of the 15 system instructions provided in Orca Research Paper. to generate custom datasets, in contrast to vanilla instruction tuning approaches used by original datasets.

This helps student model aka this model to learn thought process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version).

Please see below example usage how the System prompt is added before each instruction.

Training

The training configurations are provided in the table below.

The training takes on 4x A100(80G) GPUs and lasts for around 21 Hours for cost of $210 (~$10 for Spot Instance) by using Azure Standard_NC96ads_A100_v4.

We used DeepSpeed with fully sharded data parallelism, also know as ZeRO stage 3 by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing FastChat

Here are some of params used during training:

batch_size 48
train_micro_batch_size_per_gpu 3
gradient_accumulation_steps 4
Learning rate 2e-5
Max length 2048
Epochs 3
Optimizer AdamW

Example Usage

Here is prompt format for Oobabooga Text generation UI

### System:
{system}

### User:
{instruction}

### Input:
{input}

### Response:

Limitations & Biases:

This model can produce factually incorrect output, and should not be relied on to produce factually accurate information. This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.

Disclaimer:

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.

Citiation:

If you found wizardlm_alpaca_dolly_orca_open_llama_7b useful in your research or applications, please kindly cite using the following BibTeX:

@misc{orca_mini_v2_13b,
  author = {Pankaj Mathur},
  title = {orca_mini_v2_13b: An explain tuned LLaMA-13b model on uncensored wizardlm, alpaca, & dolly datasets},
  year = {2023},
  publisher = {GitHub, HuggingFace},
  journal = {GitHub repository, HuggingFace repository},
  howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v2_13b},
}
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@software{touvron2023llama,
  title={LLaMA: Open and Efficient Foundation Language Models},
  author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}
@misc{openalpaca,
  author = {Yixuan Su and Tian Lan and Deng Cai},
  title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
}
@misc{alpaca,
  author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
  title = {Stanford Alpaca: An Instruction-following LLaMA model},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
@online{DatabricksBlog2023DollyV2,
    author    = {Mike Conover and Matt Hayes and Ankit Mathur and Jianwei Xie and Jun Wan and Sam Shah and Ali Ghodsi and Patrick Wendell and Matei Zaharia and Reynold Xin},
    title     = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
    year      = {2023},
    url       = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm},
    urldate   = {2023-06-30}
}
@misc{xu2023wizardlm,
      title={WizardLM: Empowering Large Language Models to Follow Complex Instructions}, 
      author={Can Xu and Qingfeng Sun and Kai Zheng and Xiubo Geng and Pu Zhao and Jiazhan Feng and Chongyang Tao and Daxin Jiang},
      year={2023},
      eprint={2304.12244},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}