Model Card of lmqg/mt5-small-squad-qg
This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_squad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-small
- Language: en
- Training data: lmqg/qg_squad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/mt5-small-squad-qg")
# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-squad-qg")
output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 90.01 | default | lmqg/qg_squad |
Bleu_1 | 54.07 | default | lmqg/qg_squad |
Bleu_2 | 37.62 | default | lmqg/qg_squad |
Bleu_3 | 28.18 | default | lmqg/qg_squad |
Bleu_4 | 21.65 | default | lmqg/qg_squad |
METEOR | 23.83 | default | lmqg/qg_squad |
MoverScore | 62.75 | default | lmqg/qg_squad |
ROUGE_L | 48.95 | default | lmqg/qg_squad |
- Metrics (Question Generation, Out-of-Domain)
Dataset | Type | BERTScore | Bleu_4 | METEOR | MoverScore | ROUGE_L | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_dequad | default | 73.53 | 0.0 | 4.81 | 50.37 | 1.56 | link |
lmqg/qg_esquad | default | 74.94 | 0.59 | 6.02 | 50.62 | 5.21 | link |
lmqg/qg_frquad | default | 72.91 | 1.71 | 8.24 | 50.96 | 15.84 | link |
lmqg/qg_itquad | default | 72.6 | 0.54 | 5.89 | 50.23 | 5.01 | link |
lmqg/qg_jaquad | default | 66.08 | 0.0 | 0.51 | 46.53 | 6.08 | link |
lmqg/qg_koquad | default | 66.34 | 0.0 | 0.73 | 45.86 | 0.06 | link |
lmqg/qg_ruquad | default | 70.89 | 0.0 | 1.78 | 49.1 | 0.99 | link |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 15
- batch: 64
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 1
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train lmqg/mt5-small-squad-qg
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_squadself-reported21.650
- ROUGE-L (Question Generation) on lmqg/qg_squadself-reported48.950
- METEOR (Question Generation) on lmqg/qg_squadself-reported23.830
- BERTScore (Question Generation) on lmqg/qg_squadself-reported90.010
- MoverScore (Question Generation) on lmqg/qg_squadself-reported62.750
- BLEU4 (Question Generation) on lmqg/qg_dequadself-reported0.000
- ROUGE-L (Question Generation) on lmqg/qg_dequadself-reported0.016
- METEOR (Question Generation) on lmqg/qg_dequadself-reported0.048
- BERTScore (Question Generation) on lmqg/qg_dequadself-reported0.735
- MoverScore (Question Generation) on lmqg/qg_dequadself-reported0.504