Model Card of lmqg/mt5-small-ruquad-qg-ae
This model is fine-tuned version of google/mt5-small for question generation and answer extraction jointly on the lmqg/qg_ruquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-small
- Language: ru
- Training data: lmqg/qg_ruquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="ru", model="lmqg/mt5-small-ruquad-qg-ae")
# model prediction
question_answer_pairs = model.generate_qa("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-ruquad-qg-ae")
# answer extraction
answer = pipe("generate question: Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.")
# question generation
question = pipe("extract answers: <hl> в английском языке в нарицательном смысле применяется термин rapid transit (скоростной городской транспорт), однако употребляется он только тогда, когда по смыслу невозможно ограничиться названием одной конкретной системы метрополитена. <hl> в остальных случаях используются индивидуальные названия: в лондоне — london underground, в нью-йорке — new york subway, в ливерпуле — merseyrail, в вашингтоне — washington metrorail, в сан-франциско — bart и т. п. в некоторых городах применяется название метро (англ. metro) для систем, по своему характеру близких к метро, или для всего городского транспорта (собственно метро и наземный пассажирский транспорт (в том числе автобусы и трамваи)) в совокупности.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 86.29 | default | lmqg/qg_ruquad |
Bleu_1 | 34.11 | default | lmqg/qg_ruquad |
Bleu_2 | 27.17 | default | lmqg/qg_ruquad |
Bleu_3 | 22.06 | default | lmqg/qg_ruquad |
Bleu_4 | 18.06 | default | lmqg/qg_ruquad |
METEOR | 28.92 | default | lmqg/qg_ruquad |
MoverScore | 65.02 | default | lmqg/qg_ruquad |
ROUGE_L | 33.78 | default | lmqg/qg_ruquad |
- Metric (Question & Answer Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 79.74 | default | lmqg/qg_ruquad |
QAAlignedF1Score (MoverScore) | 56.69 | default | lmqg/qg_ruquad |
QAAlignedPrecision (BERTScore) | 76.15 | default | lmqg/qg_ruquad |
QAAlignedPrecision (MoverScore) | 54.11 | default | lmqg/qg_ruquad |
QAAlignedRecall (BERTScore) | 83.83 | default | lmqg/qg_ruquad |
QAAlignedRecall (MoverScore) | 59.79 | default | lmqg/qg_ruquad |
- Metric (Answer Extraction): raw metric file
Score | Type | Dataset | |
---|---|---|---|
AnswerExactMatch | 41.44 | default | lmqg/qg_ruquad |
AnswerF1Score | 62.67 | default | lmqg/qg_ruquad |
BERTScore | 85.69 | default | lmqg/qg_ruquad |
Bleu_1 | 44.37 | default | lmqg/qg_ruquad |
Bleu_2 | 39.42 | default | lmqg/qg_ruquad |
Bleu_3 | 34.82 | default | lmqg/qg_ruquad |
Bleu_4 | 30.21 | default | lmqg/qg_ruquad |
METEOR | 37.87 | default | lmqg/qg_ruquad |
MoverScore | 73.38 | default | lmqg/qg_ruquad |
ROUGE_L | 48.66 | default | lmqg/qg_ruquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_ruquad
- dataset_name: default
- input_types: ['paragraph_answer', 'paragraph_sentence']
- output_types: ['question', 'answer']
- prefix_types: ['qg', 'ae']
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 17
- batch: 16
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train lmqg/mt5-small-ruquad-qg-ae
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_ruquadself-reported18.060
- ROUGE-L (Question Generation) on lmqg/qg_ruquadself-reported33.780
- METEOR (Question Generation) on lmqg/qg_ruquadself-reported28.920
- BERTScore (Question Generation) on lmqg/qg_ruquadself-reported86.290
- MoverScore (Question Generation) on lmqg/qg_ruquadself-reported65.020
- QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_ruquadself-reported79.740
- QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_ruquadself-reported83.830
- QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_ruquadself-reported76.150
- QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_ruquadself-reported56.690
- QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_ruquadself-reported59.790