metadata
datasets:
- lmms-lab/LLaVA-OneVision-Data
language:
- en
- zh
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- multimodal
model-index:
- name: llava-onevision-qwen-7b-si
results:
- task:
type: multimodal
dataset:
name: AI2D
type: ai2d
metrics:
- type: accuracy
value: 81.6
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ChartQA
type: chartqa
metrics:
- type: accuracy
value: 78.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: DocVQA
type: docvqa
metrics:
- type: accuracy
value: 89.3
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: InfoVQA
type: infovqa
metrics:
- type: accuracy
value: 69.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MathVerse
type: mathverse
metrics:
- type: accuracy
value: 26.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MathVista
type: mathvista
metrics:
- type: accuracy
value: 56.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMBench
type: mmbench
metrics:
- type: accuracy
value: 81.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MME-Perception
type: mme-perception
metrics:
- type: score
value: 1626
name: score
verified: true
- task:
type: multimodal
dataset:
name: MME-Cognition
type: mme-cognition
metrics:
- type: score
value: 483
name: score
verified: true
- task:
type: multimodal
dataset:
name: MMMU
type: mmmu
metrics:
- type: accuracy
value: 47.3
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMVet
type: mmvet
metrics:
- type: accuracy
value: 58.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMStar
type: mmstar
metrics:
- type: accuracy
value: 60.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Seed-Bench
type: seed-bench
metrics:
- type: accuracy
value: 74.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Science-QA
type: science-qa
metrics:
- type: accuracy
value: 96.6
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ImageDC
type: imagedc
metrics:
- type: accuracy
value: 85.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMLBench
type: mmlbench
metrics:
- type: accuracy
value: 75.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: RealWorldQA
type: realworldqa
metrics:
- type: accuracy
value: 65.5
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Vibe-Eval
type: vibe-eval
metrics:
- type: accuracy
value: 47.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: LLaVA-W
type: llava-w
metrics:
- type: accuracy
value: 86.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: LLaVA-Wilder
type: l-wilder
metrics:
- type: accuracy
value: 69.1
name: accuracy
verified: true
LLaVA-OneVision
Play with the model on the LLaVA OneVision Chat.
Table of Contents
Model Summary
The LLaVA-OneVision models are 0.5/7/72B parameter models trained on LLaVA-OneVision, based on Qwen2 language model with a context window of 32K tokens.
- Repository: LLaVA-VL/LLaVA-NeXT
- Project Website: llava-onevision.lmms-lab.com
- Paper: LLaVA-OneVision
- Point of Contact: Bo Li
- Languages: English, Chinese
Use
Intended use
The model was trained on LLaVA-OneVision Dataset and have the ability to interact with images, multi-image and videos.
Feel free to share your generations in the Community tab!
Generation
We provide the simple generation process for using our model. For more details, you could refer to Github.
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
warnings.filterwarnings("ignore")
pretrained = "lmms-lab/llava-onevision-qwen2-7b-si"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]
cont = model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs)
Training
Model
- Architecture: SO400M + Qwen2
- Pretraining Stage: LCS-558K, 1 epoch, projector
- Mid Stage: A mixture of 4.7M high-quality synthetic data, 1 epoch, full model
- Final-Image Stage: A mixture of 3.6M single-image data, 1 epoch, full model
- OneVision Stage: A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model
- Precision: bfloat16
Hardware & Software
- GPUs: 256 * Nvidia Tesla A100 (for whole model series training)
- Orchestration: Huggingface Trainer
- Neural networks: PyTorch
Citation
@article{li2024llavaonevision,
title={LLaVA-OneVision},
}