|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- ja |
|
programming_language: |
|
- C |
|
- C++ |
|
- C# |
|
- Go |
|
- Java |
|
- JavaScript |
|
- Lua |
|
- PHP |
|
- Python |
|
- Ruby |
|
- Rust |
|
- Scala |
|
- TypeScript |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
inference: false |
|
--- |
|
# llm-jp-3-8x1.8b-instruct3 |
|
|
|
LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). |
|
|
|
This repository provides the **llm-jp-3-8x1.8b-instruct3** model. |
|
For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: |
|
- [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) |
|
- [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). |
|
|
|
|
|
Checkpoints format: Hugging Face Transformers |
|
|
|
|
|
## Required Libraries and Their Versions |
|
|
|
- torch>=2.3.0 |
|
- transformers>=4.40.1 |
|
- tokenizers>=0.19.1 |
|
- accelerate>=0.29.3 |
|
- flash-attn>=2.5.8 |
|
|
|
## Usage |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-8x1.8b-instruct3") |
|
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-8x1.8b-instruct3", device_map="auto", torch_dtype=torch.bfloat16) |
|
chat = [ |
|
{"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"}, |
|
{"role": "user", "content": "自然言語処理とは何か"}, |
|
] |
|
tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
output = model.generate( |
|
tokenized_input, |
|
max_new_tokens=100, |
|
do_sample=True, |
|
top_p=0.95, |
|
temperature=0.7, |
|
repetition_penalty=1.05, |
|
)[0] |
|
print(tokenizer.decode(output)) |
|
``` |
|
|
|
|
|
## Model Details |
|
|
|
- **Model type:** Transformer-based Language Model |
|
- **Total seen tokens:** 2.1T tokens |
|
|
|
|Params|Layers|Hidden size|Heads|Routed Experts|Activated Experts|Context length|Embedding parameters|Non-embedding parameters|Activated parameters|Total parameters| |
|
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |
|
|8x1.8b|24|2048|16|8|2|4096|407,498,752|8,858,863,616|2,924,279,808|9,266,362,368|9,266,362,368| |
|
|8x13b|40|5120|40|8|2|4096|1,018,746,880|72,144,081,920|22,200,806,400|73,162,828,800| |
|
|
|
If you would like to learn more about the pretraining of the LLM-jp-3 MoE series, please refer to this [blog post](https://llm-jp.nii.ac.jp/blog/2025/03/27/moe3.html). |
|
|
|
## Tokenizer |
|
|
|
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. |
|
The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). |
|
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). |
|
|
|
## Datasets |
|
|
|
### Pre-training |
|
|
|
The models have been pre-trained using a blend of the following datasets. |
|
|
|
| Language | Dataset | Tokens| |
|
|:---|:---|---:| |
|
|Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B |
|
||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B |
|
||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B |
|
||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B |
|
||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |
|
|English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B |
|
||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B |
|
||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B |
|
||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B |
|
||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B |
|
||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B |
|
||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |
|
|Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |
|
|Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |
|
|Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B |
|
|
|
### Post-training |
|
|
|
We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization. |
|
|
|
#### Supervised Fine-tuning |
|
The datasets used for supervised fine-tuning are as follows: |
|
|
|
| Language | Dataset | Description | |
|
|:---|:---|:---| |
|
|Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. | |
|
| |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. | |
|
| |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | |
|
| |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | |
|
| |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | |
|
| |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. | |
|
| |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |
|
|English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | |
|
| |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - | |
|
|Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. | |
|
|
|
|
|
#### Direct Preference Optimization |
|
|
|
The datasets used for supervised fine-tuning are as follows: |
|
|
|
| Language | Dataset | Description | |
|
|:---|:---|:---| |
|
|Japanese|[aya-ja-evol-inst](https://huggingface.co/datasets/llm-jp/aya-ja-evol-inst) | A synthetic preference dataset focusing on LLMs' helpfulness. | |
|
| |[ac-self-inst](https://huggingface.co/datasets/llm-jp/ac-self-inst)| A synthetic preference dataset focusing on LLMs' safety. | |
|
|
|
|
|
## Evaluation |
|
|
|
### llm-jp-eval (v1.4.1) |
|
|
|
We evaluated the models using 100 examples from the dev split. Note that we skipped the CG (Code Generation) task. |
|
|
|
| Model name | average | EL | FA | HE | MC | MR | MT | NLI | QA | RC | SUM | |
|
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | |
|
| [llm-jp/llm-jp-3-7.2b](https://huggingface.co/llm-jp/llm-jp-3-7.2b) | 0.455 | 0.400 | 0.266 | 0.350 | 0.547 | 0.430 | 0.809 | 0.362 | 0.545 | 0.814 | 0.028 | |
|
| [llm-jp/llm-jp-3-7.2b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-7.2b-instruct3) | 0.514 | 0.447 | 0.245 | 0.435 | 0.693 | 0.510 | 0.826 | 0.588 | 0.497 | 0.838 | 0.059 | |
|
| [llm-jp/llm-jp-3-172b](https://huggingface.co/llm-jp/llm-jp-3-172b) | 0.543 | 0.408 | 0.266 | 0.515 | 0.763 | 0.670 | 0.823 | 0.574 | 0.569 | 0.829 | 0.015 | |
|
| [llm-jp/llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) | 0.613 | 0.517 | 0.271 | 0.570 | 0.873 | 0.730 | 0.844 | 0.728 | 0.601 | 0.883 | 0.112 | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| [llm-jp/llm-jp-3-8x1.8b](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b) | 0.454 | 0.387 | 0.241 | 0.265 | 0.530 | 0.510 | 0.810 | 0.476 | 0.537 | 0.755 | 0.026 | |
|
| [llm-jp/llm-jp-3-8x1.8b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct2) | 0.513 | 0.448 | 0.230 | 0.405 | 0.643 | 0.560 | 0.815 | 0.566 | 0.561 | 0.837 | 0.066 | |
|
| [llm-jp/llm-jp-3-8x1.8b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct3) | 0.515 | 0.452 | 0.227 | 0.425 | 0.683 | 0.540 | 0.821 | 0.558 | 0.545 | 0.819 | 0.075 | |
|
| [llm-jp/llm-jp-3-8x13b](https://huggingface.co/llm-jp/llm-jp-3-8x13b) | 0.587 | 0.545 | 0.291 | 0.495 | 0.803 | 0.720 | 0.838 | 0.578 | 0.646 | 0.854 | 0.097 | |
|
| [llm-jp/llm-jp-3-8x13b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct2) | 0.626 | 0.552 | 0.289 | 0.525 | 0.897 | 0.750 | 0.836 | 0.682 | 0.637 | 0.907 | 0.182 | |
|
| [llm-jp/llm-jp-3-8x13b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct3) | 0.625 | 0.548 | 0.285 | 0.525 | 0.907 | 0.760 | 0.839 | 0.688 | 0.627 | 0.904 | 0.164 | |
|
|
|
### Japanese MT Bench |
|
|
|
We evaluated the models using `gpt-4o-2024-08-06`. |
|
The scores represent the average values obtained from five rounds of inference and evaluation. |
|
For more details, please refer to the [codes](https://github.com/llm-jp/llm-jp-judge). |
|
|
|
| Model name | average | coding | extraction | humanities | math | reasoning | roleplay | stem | writing | |
|
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | |
|
| [llm-jp/llm-jp-3-7.2b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-7.2b-instruct3) | 5.79 | 3.46 | 5.94 | 8.15 | 3.95 | 4.46 | 7.51 | 6.23 | 6.66 | |
|
| [llm-jp/llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) | 6.36 | 4.24 | 6.66 | 8.11 | 4.58 | 5.74 | 7.44 | 6.76 | 7.36 | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| [llm-jp/llm-jp-3-8x1.8b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct2) | 5.47 | 3.47 | 4.90 | 7.78 | 3.51 | 4.38 | 6.84 | 6.35 | 6.54 | |
|
| [llm-jp/llm-jp-3-8x1.8b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct3) | 5.52 | 3.60 | 5.23 | 7.81 | 3.87 | 4.53 | 6.40 | 5.98 | 6.72 | |
|
| [llm-jp/llm-jp-3-8x13b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct2) | 6.62 | 4.50 | 6.53 | 8.56 | 5.30 | 6.03 | 7.86 | 7.10 | 7.12 | |
|
| [llm-jp/llm-jp-3-8x13b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct3) | 6.58 | 4.90 | 6.41 | 8.32 | 5.37 | 5.20 | 7.75 | 7.24 | 7.48 | |
|
|
|
|
|
### AnswerCarefully-Eval |
|
|
|
[AnswerCarefully-Eval](https://www.anlp.jp/proceedings/annual_meeting/2025/pdf_dir/Q4-19.pdf) assesses the safety of Japanese language model outputs using the LLM-as-a-Judge approach, based on the test set from [llm-jp/AnswerCarefully](https://huggingface.co/datasets/llm-jp/AnswerCarefully). |
|
We evaluated the models using `gpt-4-0613`. |
|
The scores represent the average values obtained from five rounds of inference and evaluation. |
|
|
|
|
|
| Model name | Acceptance rate (%, ↑) | Violation rate (%, ↓) | |
|
| :--- | ---: | ---: | |
|
| [llm-jp/llm-jp-3-7.2b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-7.2b-instruct3) | 92.86 | 2.44 | |
|
| [llm-jp/llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) | 95.48 | 1.67 | |
|
| --- | --- | --- | |
|
| [llm-jp/llm-jp-3-8x1.8b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct2) | 86.13 | 7.56 | |
|
| [llm-jp/llm-jp-3-8x1.8b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x1.8b-instruct3) | 92.20 | 2.20 | |
|
| [llm-jp/llm-jp-3-8x13b-instruct2](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct2) | 88.63 | 6.01 | |
|
| [llm-jp/llm-jp-3-8x13b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-8x13b-instruct3) | 94.35 | 1.55 | |
|
|
|
|
|
|
|
## Risks and Limitations |
|
|
|
The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. |
|
|
|
|
|
## Send Questions to |
|
|
|
llm-jp(at)nii.ac.jp |
|
|
|
|
|
## License |
|
|
|
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) |
|
|
|
## How to cite |
|
|
|
If you find our work helpful, please feel free to cite the paper. |
|
|
|
``` |
|
@inproceedings{ |
|
nakamura2025dropupcycling, |
|
title={Drop-Upcycling: Training Sparse Mixture of Experts with Partial Re-initialization}, |
|
author={Taishi Nakamura and Takuya Akiba and Kazuki Fujii and Yusuke Oda and Rio Yokota and Jun Suzuki}, |
|
booktitle={The Thirteenth International Conference on Learning Representations}, |
|
year={2025}, |
|
url={https://openreview.net/forum?id=gx1wHnf5Vp} |
|
} |
|
``` |
|
|
|
## Model Card Authors |
|
|
|
*The names are listed in alphabetical order.* |
|
|
|
Hirokazu Kiyomaru, Takashi Kodama and Taishi Nakamura. |