|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: |
|
- MrLight/dse-qwen2-2b-mrl-v1 |
|
tags: |
|
- transformers |
|
- sentence-transformers |
|
- Qwen2-VL |
|
datasets: |
|
- llamaindex/vdr-multilingual-train |
|
--- |
|
|
|
# vdr-2b-v1 |
|
|
|
![](cover.png) |
|
|
|
vdr-2b-v1 is an english only embedding model designed for visual document retrieval. It encodes document page screenshots into dense single-vector representations, this will effectively allow to search and query visually rich multilingual documents without the need for any OCR, data extraction pipelines, chunking... |
|
|
|
- **Trained on the 🇬🇧 English vdr-multi-train subset:** extensive training dataset of 100k high-quality english samples. |
|
|
|
- **Low VRAM and Faster Inference**: achieves better results on synthetic Vidore benchmarks with just 30% of the base model image resolution. This results in 3x faster inference and much lower VRAM usage. |
|
|
|
- **Matryoshka Representation Learning**: You can reduce the vectors size 3x and still keep 98% of the embeddings quality. |
|
|
|
The multilingual version is available [here](https://huggingface.co/llamaindex/vdr-2b-multi-v1). To know more about both models, read the [announcement blogpost](https://huggingface.co/blog/marco/vdr-2b-multilingual). |
|
|
|
# Usage |
|
|
|
The model uses bf16 tensors and allocates ~4.4GB of VRAM when loaded. You can easily run inference and generate embeddings using 768 image patches and a batch size of 16 even on a cheap NVIDIA T4 GPU. This table reports the memory footprint (GB) under conditions of different batch sizes with HuggingFace Transformers and maximum 768 image patches. |
|
|
|
| Batch Size | GPU Memory (GB) | |
|
|------------|-----------------| |
|
| 4 | 6.9 | |
|
| 8 | 8.8 | |
|
| 16 | 11.5 | |
|
| 32 | 19.7 | |
|
|
|
You can generate embeddings with this model in many different ways: |
|
|
|
<details open> |
|
<summary> |
|
via LlamaIndex |
|
</summary> |
|
|
|
```bash |
|
pip install -U llama-index-embeddings-huggingface |
|
``` |
|
|
|
```python |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
|
|
model = HuggingFaceEmbedding( |
|
model_name="llamaindex/vdr-2b-v1", |
|
device="cpu", # "mps" for mac, "cuda" for nvidia GPUs |
|
trust_remote_code=True, |
|
) |
|
|
|
image_embedding = model.get_image_embedding("image.png") |
|
query_embedding = model.get_query_embedding("some query") |
|
``` |
|
|
|
</details> |
|
|
|
<details> |
|
<summary> |
|
via HuggingFace Transformers |
|
</summary> |
|
|
|
```python |
|
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration |
|
from PIL import Image |
|
import torch |
|
import math |
|
|
|
# more pixels -> better embeddings -> more VRAM -> slower inference |
|
# From my experience, 768 image patches is the right spot for compute efficient embeddings. |
|
max_pixels = 768 * 28 * 28 |
|
min_pixels = 1 * 28 * 28 |
|
|
|
# Load the embedding model and processor |
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
'llamaindex/vdr-2b-v1', |
|
# These are the recommended kwargs for the model, but change them as needed |
|
attn_implementation="flash_attention_2", |
|
torch_dtype=torch.bfloat16, |
|
device_map="cuda:0" |
|
).eval() |
|
|
|
processor = AutoProcessor.from_pretrained( |
|
'llamaindex/vdr-2b-v1', |
|
min_pixels=min_pixels, |
|
max_pixels=max_pixels |
|
) |
|
|
|
model.padding_side = "left" |
|
processor.tokenizer.padding_side = "left" |
|
|
|
document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>" |
|
|
|
query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>" |
|
``` |
|
|
|
**Encode queries** |
|
|
|
```python |
|
def encode_queries(queries: list[str], dimension: int) -> torch.Tensor: |
|
""" |
|
Encode a list of queries into a tensor of embeddings. |
|
|
|
Args: |
|
queries: A list of strings, each representing a query. |
|
dimension: The desired dimension of the output embeddings. |
|
|
|
Returns: |
|
A tensor of shape (num_queries, dimension) containing the encoded queries. |
|
""" |
|
|
|
dummy_image = Image.new('RGB', (56, 56)) |
|
inputs = processor( |
|
text=[query_prompt % x for x in queries], |
|
images=[dummy_image for _ in queries], |
|
videos=None, |
|
padding='longest', |
|
return_tensors='pt' |
|
).to('cuda:0') |
|
|
|
cache_position = torch.arange(0, len(queries)) |
|
inputs = model.prepare_inputs_for_generation( |
|
**inputs, cache_position=cache_position, use_cache=False) |
|
|
|
with torch.no_grad(): |
|
output = self.model( |
|
**inputs, |
|
return_dict=True, |
|
output_hidden_states=True |
|
) |
|
|
|
embeddings = output.hidden_states[-1][:, -1] |
|
return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1) |
|
``` |
|
|
|
**Encode documents** |
|
|
|
```python |
|
def round_by_factor(number: float, factor: int) -> int: |
|
return round(number / factor) * factor |
|
|
|
def ceil_by_factor(number: float, factor: int) -> int: |
|
return math.ceil(number / factor) * factor |
|
|
|
def floor_by_factor(number: float, factor: int) -> int: |
|
return math.floor(number / factor) * factor |
|
|
|
def smart_resize(height: int, width: int) -> tuple[int, int]: |
|
h_bar = max(28, round_by_factor(height, 28)) |
|
w_bar = max(28, round_by_factor(width, 28)) |
|
if h_bar * w_bar > max_pixels: |
|
beta = math.sqrt((height * width) / max_pixels) |
|
h_bar = floor_by_factor(height / beta, 28) |
|
w_bar = floor_by_factor(width / beta, 28) |
|
elif h_bar * w_bar < min_pixels: |
|
beta = math.sqrt(min_pixels / (height * width)) |
|
h_bar = ceil_by_factor(height * beta, 28) |
|
w_bar = ceil_by_factor(width * beta, 28) |
|
return w_bar, h_bar |
|
|
|
def resize(image: Image.Image): |
|
new_size = smart_resize(image.height, image.width) |
|
return image.resize(new_size) |
|
|
|
def encode_documents(documents: list[Image.Image], dimension: int): |
|
""" |
|
Encode a list of images into a tensor of embeddings. |
|
|
|
Args: |
|
documents: A list of PIL Image objects. |
|
dimension: The desired dimension of the output embeddings. |
|
|
|
Returns: |
|
A tensor of shape (num_documents, dimension) containing the encoded images. |
|
""" |
|
|
|
inputs = processor( |
|
text=[document_prompt] * len(documents), |
|
images=[resize(x) for x in documents], |
|
videos=None, |
|
padding='longest', |
|
return_tensors='pt' |
|
).to('cuda:0') |
|
|
|
cache_position = torch.arange(0, len(queries)) |
|
inputs = model.prepare_inputs_for_generation( |
|
**inputs, cache_position=cache_position, use_cache=False) |
|
|
|
with torch.no_grad(): |
|
output = self.model( |
|
**inputs, |
|
return_dict=True, |
|
output_hidden_states=True |
|
) |
|
|
|
embeddings = output.hidden_states[-1][:, -1] |
|
return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1) |
|
``` |
|
|
|
</details> |
|
|
|
|
|
<details> |
|
<summary> |
|
via SentenceTransformers |
|
</summary> |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
model = SentenceTransformer( |
|
model_name_or_path="llamaindex/vdr-2b-v1", |
|
device="cuda", |
|
trust_remote_code=True, |
|
# These are the recommended kwargs for the model, but change them as needed if you don't have CUDA |
|
model_kwargs={ |
|
"torch_dtype": torch.bfloat16, |
|
"device_map": "cuda:0", |
|
"attn_implementation": "flash_attention_2" |
|
}, |
|
) |
|
|
|
embeddings = model.encode("image.png") |
|
``` |
|
|
|
</details> |
|
|
|
# Training |
|
|
|
The model is based on [MrLight/dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and it was trained on the new [vdr-multilingual-train](https://huggingface.co/datasets/llamaindex/vdr-multilingual-train) english subset that consinsists of 100k high quality samples. It was trained for 1 epoch using the [DSE approach](https://arxiv.org/abs/2406.11251), with a batch size of 128 and hard-mined negatives. |
|
|
|
# Results |
|
|
|
The model has been evaluated on the Vidore benchmark. All evaluations are performed by calculating **NDCG@5** scores using an image resolution that can be represented with **maximum 768 tokens**. |
|
|
|
On the full Vidore benchmark (evaluated with 768 image tokens), both the multilingual and the english-only version performs better than the base model. |
|
|
|
| | **Avg** | **shiftproject** | **government** | **healthcare** | **energy** | **ai** | **docvqa** | **arxivqa** | **tatdqa** | **infovqa** | **tabfquad** | |
|
|---------------------|----------|------------------|----------------|----------------|------------|----------|------------|-------------|------------|-------------|--------------| |
|
| dse-qwen2-2b-mrl-v1 | 83.6 | 79.8 | 95.7 | 96.9 | 92 | 98.2 | 56.3 | **85.2** | 53.9 | 87.5 | 90.3 | |
|
| vdr-2b-multi-v1 | 84.0 | 82.4 | 95.5 | 96.5 | 91.2 | **98.5** | **58.5** | 84.7 | 53.6 | 87.1 | **92.2** | |
|
| vdr-2b-v1 | **84.3** | **83.4** | **96.9** | **97.2** | **92.6** | 96.8 | 57.4 | 85.1 | **54.1** | **87.9** | 91.3 | |
|
|
|
![](chart.png) |
|
|
|
| | Avg | shiftproject | government | healthcare | energy | ai | |
|
|-----------------------------------------|----------|--------------|------------|------------|----------|----------| |
|
| dse-qwen2-2b-mrl-v1 (2560 image tokens) | 93.0 | 82 | 96 | 96.4 | **92.9** | **97.5** | |
|
| vdr-2b-v1 (768 image tokens) | **93.4** | **83.4** | **96.9** | **97.2** | 92.6 | 96.8 | |
|
|
|
vdr-2b-v1 matches the performance of the base model on vidore synthetic datasets, while only using 30% of the image tokens (768 vs. 2560). This results in 3x faster inference and much lower VRAM usage. |