update handling of init args
Browse files- custom_st.py +16 -5
custom_st.py
CHANGED
|
@@ -22,6 +22,8 @@ class Transformer(nn.Module):
|
|
| 22 |
min_pixels: int = 1 * 28 * 28,
|
| 23 |
dimension: int = 2048,
|
| 24 |
max_seq_length: Optional[int] = None,
|
|
|
|
|
|
|
| 25 |
cache_dir: Optional[str] = None,
|
| 26 |
device: str = 'cuda:0',
|
| 27 |
**kwargs,
|
|
@@ -34,6 +36,17 @@ class Transformer(nn.Module):
|
|
| 34 |
self.min_pixels = min_pixels
|
| 35 |
self.max_seq_length = max_seq_length
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
# Initialize model
|
| 38 |
try:
|
| 39 |
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
@@ -42,7 +55,7 @@ class Transformer(nn.Module):
|
|
| 42 |
torch_dtype=torch.bfloat16,
|
| 43 |
device_map=device,
|
| 44 |
cache_dir=cache_dir,
|
| 45 |
-
**
|
| 46 |
).eval()
|
| 47 |
except (ImportError, ValueError) as e:
|
| 48 |
print(f"Flash attention not available, falling back to default attention: {e}")
|
|
@@ -51,15 +64,13 @@ class Transformer(nn.Module):
|
|
| 51 |
torch_dtype=torch.bfloat16,
|
| 52 |
device_map=device,
|
| 53 |
cache_dir=cache_dir,
|
| 54 |
-
**
|
| 55 |
).eval()
|
| 56 |
|
| 57 |
# Initialize processor
|
| 58 |
self.processor = AutoProcessor.from_pretrained(
|
| 59 |
processor_name_or_path or model_name_or_path,
|
| 60 |
-
|
| 61 |
-
max_pixels=max_pixels,
|
| 62 |
-
cache_dir=cache_dir
|
| 63 |
)
|
| 64 |
|
| 65 |
# Set padding sides
|
|
|
|
| 22 |
min_pixels: int = 1 * 28 * 28,
|
| 23 |
dimension: int = 2048,
|
| 24 |
max_seq_length: Optional[int] = None,
|
| 25 |
+
model_args: Optional[Dict[str, Any]] = None,
|
| 26 |
+
processor_args: Optional[Dict[str, Any]] = None,
|
| 27 |
cache_dir: Optional[str] = None,
|
| 28 |
device: str = 'cuda:0',
|
| 29 |
**kwargs,
|
|
|
|
| 36 |
self.min_pixels = min_pixels
|
| 37 |
self.max_seq_length = max_seq_length
|
| 38 |
|
| 39 |
+
# Handle args
|
| 40 |
+
model_kwargs = model_args or {}
|
| 41 |
+
model_kwargs.update(kwargs)
|
| 42 |
+
|
| 43 |
+
processor_kwargs = processor_args or {}
|
| 44 |
+
processor_kwargs.update({
|
| 45 |
+
'min_pixels': min_pixels,
|
| 46 |
+
'max_pixels': max_pixels,
|
| 47 |
+
'cache_dir': cache_dir
|
| 48 |
+
})
|
| 49 |
+
|
| 50 |
# Initialize model
|
| 51 |
try:
|
| 52 |
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
|
| 55 |
torch_dtype=torch.bfloat16,
|
| 56 |
device_map=device,
|
| 57 |
cache_dir=cache_dir,
|
| 58 |
+
**model_kwargs
|
| 59 |
).eval()
|
| 60 |
except (ImportError, ValueError) as e:
|
| 61 |
print(f"Flash attention not available, falling back to default attention: {e}")
|
|
|
|
| 64 |
torch_dtype=torch.bfloat16,
|
| 65 |
device_map=device,
|
| 66 |
cache_dir=cache_dir,
|
| 67 |
+
**model_kwargs
|
| 68 |
).eval()
|
| 69 |
|
| 70 |
# Initialize processor
|
| 71 |
self.processor = AutoProcessor.from_pretrained(
|
| 72 |
processor_name_or_path or model_name_or_path,
|
| 73 |
+
**processor_kwargs
|
|
|
|
|
|
|
| 74 |
)
|
| 75 |
|
| 76 |
# Set padding sides
|