improve again
Browse files- custom_st.py +60 -70
custom_st.py
CHANGED
|
@@ -9,7 +9,7 @@ import requests
|
|
| 9 |
import torch
|
| 10 |
from PIL import Image
|
| 11 |
from torch import nn
|
| 12 |
-
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
| 13 |
|
| 14 |
class Transformer(nn.Module):
|
| 15 |
save_in_root: bool = True
|
|
@@ -21,11 +21,9 @@ class Transformer(nn.Module):
|
|
| 21 |
max_pixels: int = 768 * 28 * 28,
|
| 22 |
min_pixels: int = 1 * 28 * 28,
|
| 23 |
dimension: int = 2048,
|
|
|
|
| 24 |
cache_dir: Optional[str] = None,
|
| 25 |
device: str = 'cuda:0',
|
| 26 |
-
config_args: Optional[Dict[str, Any]] = None,
|
| 27 |
-
model_args: Optional[Dict[str, Any]] = None,
|
| 28 |
-
processor_args: Optional[Dict[str, Any]] = None,
|
| 29 |
**kwargs,
|
| 30 |
) -> None:
|
| 31 |
super(Transformer, self).__init__()
|
|
@@ -34,61 +32,55 @@ class Transformer(nn.Module):
|
|
| 34 |
self.dimension = dimension
|
| 35 |
self.max_pixels = max_pixels
|
| 36 |
self.min_pixels = min_pixels
|
| 37 |
-
self.
|
| 38 |
-
self.processor_name_or_path = processor_name_or_path or model_name_or_path
|
| 39 |
-
self.cache_dir = cache_dir
|
| 40 |
|
| 41 |
-
|
| 42 |
-
self.model_args = model_args or {}
|
| 43 |
-
self.processor_args = processor_args or {}
|
| 44 |
-
|
| 45 |
-
self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
|
| 46 |
-
self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
|
| 47 |
-
|
| 48 |
-
@classmethod
|
| 49 |
-
def load(cls, input_path: str) -> 'Transformer':
|
| 50 |
-
config_path = os.path.join(input_path, 'config.json')
|
| 51 |
-
if os.path.exists(config_path):
|
| 52 |
-
with open(config_path) as f:
|
| 53 |
-
config = json.load(f)
|
| 54 |
-
else:
|
| 55 |
-
config = {}
|
| 56 |
-
|
| 57 |
-
instance = cls(model_name_or_path=input_path, **config)
|
| 58 |
-
|
| 59 |
-
# Load model with flash attention if available
|
| 60 |
try:
|
| 61 |
-
|
| 62 |
-
|
| 63 |
attn_implementation="flash_attention_2",
|
| 64 |
torch_dtype=torch.bfloat16,
|
| 65 |
-
device_map=
|
| 66 |
-
cache_dir=
|
| 67 |
-
**
|
| 68 |
).eval()
|
| 69 |
except (ImportError, ValueError) as e:
|
| 70 |
print(f"Flash attention not available, falling back to default attention: {e}")
|
| 71 |
-
|
| 72 |
-
|
| 73 |
torch_dtype=torch.bfloat16,
|
| 74 |
-
device_map=
|
| 75 |
-
cache_dir=
|
| 76 |
-
**
|
| 77 |
).eval()
|
| 78 |
|
| 79 |
# Initialize processor
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
min_pixels=
|
| 83 |
-
max_pixels=
|
| 84 |
-
cache_dir=
|
| 85 |
-
**instance.processor_args
|
| 86 |
)
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
def _smart_resize(self, height: int, width: int) -> tuple[int, int]:
|
| 94 |
h_bar = max(28, self._round_by_factor(height, 28))
|
|
@@ -132,21 +124,8 @@ class Transformer(nn.Module):
|
|
| 132 |
|
| 133 |
for sample in texts:
|
| 134 |
if isinstance(sample, str):
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
if sample.startswith('http'):
|
| 138 |
-
response = requests.get(sample)
|
| 139 |
-
image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 140 |
-
else:
|
| 141 |
-
image = self._decode_data_image(sample).convert('RGB')
|
| 142 |
-
processed_texts.append(self.document_prompt)
|
| 143 |
-
processed_images.append(self._resize_image(image))
|
| 144 |
-
except Exception as e:
|
| 145 |
-
processed_texts.append(self.query_prompt % sample)
|
| 146 |
-
processed_images.append(dummy_image)
|
| 147 |
-
else:
|
| 148 |
-
processed_texts.append(self.query_prompt % sample)
|
| 149 |
-
processed_images.append(dummy_image)
|
| 150 |
elif isinstance(sample, Image.Image):
|
| 151 |
processed_texts.append(self.document_prompt)
|
| 152 |
processed_images.append(self._resize_image(sample))
|
|
@@ -186,21 +165,32 @@ class Transformer(nn.Module):
|
|
| 186 |
return {k: v.to(self.device) for k, v in inputs.items()}
|
| 187 |
|
| 188 |
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
# Save the configuration
|
| 190 |
config = {
|
| 191 |
-
'model_name_or_path':
|
| 192 |
-
'processor_name_or_path': self.processor_name_or_path,
|
| 193 |
'max_pixels': self.max_pixels,
|
| 194 |
'min_pixels': self.min_pixels,
|
| 195 |
'dimension': self.dimension,
|
| 196 |
-
'
|
| 197 |
-
'model_args': self.model_args,
|
| 198 |
-
'processor_args': self.processor_args,
|
| 199 |
}
|
| 200 |
|
| 201 |
-
os.
|
| 202 |
-
with open(
|
| 203 |
json.dump(config, f)
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import torch
|
| 10 |
from PIL import Image
|
| 11 |
from torch import nn
|
| 12 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
| 13 |
|
| 14 |
class Transformer(nn.Module):
|
| 15 |
save_in_root: bool = True
|
|
|
|
| 21 |
max_pixels: int = 768 * 28 * 28,
|
| 22 |
min_pixels: int = 1 * 28 * 28,
|
| 23 |
dimension: int = 2048,
|
| 24 |
+
max_seq_length: Optional[int] = None,
|
| 25 |
cache_dir: Optional[str] = None,
|
| 26 |
device: str = 'cuda:0',
|
|
|
|
|
|
|
|
|
|
| 27 |
**kwargs,
|
| 28 |
) -> None:
|
| 29 |
super(Transformer, self).__init__()
|
|
|
|
| 32 |
self.dimension = dimension
|
| 33 |
self.max_pixels = max_pixels
|
| 34 |
self.min_pixels = min_pixels
|
| 35 |
+
self.max_seq_length = max_seq_length
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# Initialize model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
try:
|
| 39 |
+
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 40 |
+
model_name_or_path,
|
| 41 |
attn_implementation="flash_attention_2",
|
| 42 |
torch_dtype=torch.bfloat16,
|
| 43 |
+
device_map=device,
|
| 44 |
+
cache_dir=cache_dir,
|
| 45 |
+
**kwargs
|
| 46 |
).eval()
|
| 47 |
except (ImportError, ValueError) as e:
|
| 48 |
print(f"Flash attention not available, falling back to default attention: {e}")
|
| 49 |
+
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 50 |
+
model_name_or_path,
|
| 51 |
torch_dtype=torch.bfloat16,
|
| 52 |
+
device_map=device,
|
| 53 |
+
cache_dir=cache_dir,
|
| 54 |
+
**kwargs
|
| 55 |
).eval()
|
| 56 |
|
| 57 |
# Initialize processor
|
| 58 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 59 |
+
processor_name_or_path or model_name_or_path,
|
| 60 |
+
min_pixels=min_pixels,
|
| 61 |
+
max_pixels=max_pixels,
|
| 62 |
+
cache_dir=cache_dir
|
|
|
|
| 63 |
)
|
| 64 |
|
| 65 |
+
# Set padding sides
|
| 66 |
+
self.model.padding_side = "left"
|
| 67 |
+
self.processor.tokenizer.padding_side = "left"
|
| 68 |
+
|
| 69 |
+
# Store prompts
|
| 70 |
+
self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
|
| 71 |
+
self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
|
| 72 |
+
|
| 73 |
+
# Try to infer max_seq_length if not provided
|
| 74 |
+
if self.max_seq_length is None:
|
| 75 |
+
if (
|
| 76 |
+
hasattr(self.model, 'config')
|
| 77 |
+
and hasattr(self.model.config, 'max_position_embeddings')
|
| 78 |
+
and hasattr(self.processor.tokenizer, 'model_max_length')
|
| 79 |
+
):
|
| 80 |
+
self.max_seq_length = min(
|
| 81 |
+
self.model.config.max_position_embeddings,
|
| 82 |
+
self.processor.tokenizer.model_max_length,
|
| 83 |
+
)
|
| 84 |
|
| 85 |
def _smart_resize(self, height: int, width: int) -> tuple[int, int]:
|
| 86 |
h_bar = max(28, self._round_by_factor(height, 28))
|
|
|
|
| 124 |
|
| 125 |
for sample in texts:
|
| 126 |
if isinstance(sample, str):
|
| 127 |
+
processed_texts.append(self.query_prompt % sample)
|
| 128 |
+
processed_images.append(dummy_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
elif isinstance(sample, Image.Image):
|
| 130 |
processed_texts.append(self.document_prompt)
|
| 131 |
processed_images.append(self._resize_image(sample))
|
|
|
|
| 165 |
return {k: v.to(self.device) for k, v in inputs.items()}
|
| 166 |
|
| 167 |
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
| 168 |
+
"""Save the model, tokenizer and processor to the given path."""
|
| 169 |
+
self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
|
| 170 |
+
self.processor.save_pretrained(output_path)
|
| 171 |
+
|
| 172 |
# Save the configuration
|
| 173 |
config = {
|
| 174 |
+
'model_name_or_path': output_path,
|
|
|
|
| 175 |
'max_pixels': self.max_pixels,
|
| 176 |
'min_pixels': self.min_pixels,
|
| 177 |
'dimension': self.dimension,
|
| 178 |
+
'max_seq_length': self.max_seq_length,
|
|
|
|
|
|
|
| 179 |
}
|
| 180 |
|
| 181 |
+
config_path = os.path.join(output_path, 'sentence_bert_config.json')
|
| 182 |
+
with open(config_path, 'w') as f:
|
| 183 |
json.dump(config, f)
|
| 184 |
|
| 185 |
+
@staticmethod
|
| 186 |
+
def load(input_path: str) -> 'Transformer':
|
| 187 |
+
"""Load a saved model from the given path."""
|
| 188 |
+
# Load configuration
|
| 189 |
+
config_path = os.path.join(input_path, 'sentence_bert_config.json')
|
| 190 |
+
if os.path.exists(config_path):
|
| 191 |
+
with open(config_path) as f:
|
| 192 |
+
config = json.load(f)
|
| 193 |
+
else:
|
| 194 |
+
config = {'model_name_or_path': input_path}
|
| 195 |
+
|
| 196 |
+
return Transformer(**config)
|