1. Introduction of this repository

Official Repository of "Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models". NeurIPS 2024

2. Pipelines and Experimental Results

The pipeline of ProGraph benchmark construction

The pipeline of LLM4Graph dataset construction and corresponding model enhancement.

The pass rate (left) and accuracy (right) of open-source models with instruction tuning.

Compilation error statistics for open source models.

Performance (%) of open-source models regarding different question types.

Model Method True/False Drawing Calculation Hybrid
Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy
Llama 3 No Fine-tune 43.6 33.3 28.3 10.0 15.6 12.5 26.8 8.3
Code Only 82.1 71.8 59.2 42.0 34.4 31.3 60.7 43.6
Code+RAG 3 84.6 44.0 56.9 29.0 50.0 37.5 66.1 37.2
Code+RAG 5 66.7 36.8 53.5 25.4 37.5 28.1 60.7 36.3
Code+RAG 7 66.7 37.2 50.9 24.4 50.0 35.9 64.3 39.3
Doc+Code 82.1 73.1 64.4 43.7 40.6 31.8 67.9 41.3
Deepseek Coder No Fine-tune 66.7 41.5 47.8 22.1 53.1 39.4 46.4 18.2
Code Only 71.8 61.5 60.0 41.1 50.0 45.3 62.5 42.1
Code+RAG 3 71.8 48.3 57.7 32.2 53.1 45.3 44.6 22.8
Code+RAG 5 71.8 53.9 50.7 29.3 40.6 34.4 39.3 28.6
Code+RAG 7 74.4 54.7 50.4 28.7 37.5 34.4 48.2 31.4
Doc+Code 79.5 68.0 66.2 46.0 37.5 34.4 66.1 42.3

3. How to Use

Here give some examples of how to use our models.

Chat Model Inference

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList
from peft import PeftModel

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_name_or_path = '../models/deepseek-ai/deepseek-coder-7b-instruct-v1.5'
# You can use Llama-3-8B by 'meta-llama/Meta-Llama-3-8B-Instruct'.
# You can also use your local path.
peft_model_path = 'https://huggingface.co/lixin4sky/ProGraph/tree/main/deepseek-code-only' 
# Or other models in the repository.

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to(device)
peft_model = PeftModel.from_pretrained(model, peft_model_path).to(device)

input_text = '' # the question.

message = [
    {"role": "user", "content": f"{input_text}"},
]

input_ids = tokenizer.apply_chat_template(conversation=message,
                                        tokenize=True,
                                        add_generation_prompt=False,
                                        return_tensors='pt')

input_ids = input_ids.to("cuda:0" if torch.cuda.is_available() else "cpu")
with torch.inference_mode():
    output_ids = model.generate(input_ids=input_ids[:, :-3], max_new_tokens=4096, do_sample=False, pad_token_id=2)
response = tokenizer.batch_decode(output_ids.detach().cpu().numpy(), skip_special_tokens = True)

print(response)

You can find more tutorials in our GitHub repository: (https://github.com/BUPT-GAMMA/ProGraph)

4. Next Level

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) does not yet support transformers, alignment-handbook models for this pipeline type.

Model tree for lixin4sky/ProGraph

Finetuned
(9)
this model