Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
class NER:
"""
实体命名实体识别
"""
def __init__(self,model_path) -> None:
"""
Args:
model_path:模型地址
"""
self.model_path = model_path
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForTokenClassification.from_pretrained(model_path)
def ner(self,sentence:str) -> list:
"""
命名实体识别
Args:
sentence:要识别的句子
Return:
实体列表:[{'type':'LOC','tokens':[...]},...]
"""
ans = []
for i in range(0,len(sentence),500):
ans = ans + self._ner(sentence[i:i+500])
return ans
def _ner(self,sentence:str) -> list:
if len(sentence) == 0: return []
inputs = self.tokenizer(
sentence, add_special_tokens=True, return_tensors="pt"
)
if torch.cuda.is_available():
self.model = self.model.to(torch.device('cuda:0'))
for key in inputs:
inputs[key] = inputs[key].to(torch.device('cuda:0'))
with torch.no_grad():
logits = self.model(**inputs).logits
predicted_token_class_ids = logits.argmax(-1)
predicted_tokens_classes = [self.model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
entities = []
entity = {}
for idx, token in enumerate(self.tokenizer.tokenize(sentence,add_special_tokens=True)):
if 'B-' in predicted_tokens_classes[idx] or 'S-' in predicted_tokens_classes[idx]:
if len(entity) != 0:
entities.append(entity)
entity = {}
entity['type'] = predicted_tokens_classes[idx].replace('B-','').replace('S-','')
entity['tokens'] = [token]
elif 'I-' in predicted_tokens_classes[idx] or 'E-' in predicted_tokens_classes[idx] or 'M-' in predicted_tokens_classes[idx]:
if len(entity) == 0:
entity['type'] = predicted_tokens_classes[idx].replace('I-','').replace('E-','').replace('M-','')
entity['tokens'] = []
entity['tokens'].append(token)
else:
if len(entity) != 0:
entities.append(entity)
entity = {}
if len(entity) > 0:
entities.append(entity)
return entities
ner_model = NER('lixin12345/chinese-medical-ner')
text = """
患者既往慢阻肺多年;冠心病史6年,平素规律服用心可舒、保心丸等控制可;双下肢静脉血栓3年,保守治疗效果可;左侧腹股沟斜疝无张力修补术后2年。否认"高血压、糖尿病"等慢性病病史,否认"肝炎、结核"等传染病病史及其密切接触史,否认其他手术、重大外伤、输血史,否认"食物、药物、其他"等过敏史,预防接种史随社会。
"""
ans = ner_model.ner(text)
# ans
# DiseaseNameOrComprehensiveCertificate
# 慢阻肺
# DiseaseNameOrComprehensiveCertificate
# 冠心病
# Drug
# 心可舒
# Drug
# 保心丸
# DiseaseNameOrComprehensiveCertificate
# 双下肢静脉血栓
# DiseaseNameOrComprehensiveCertificate
# 左侧腹股沟斜疝
# TreatmentOrPreventionProcedures
# 无张力修补术
# DiseaseNameOrComprehensiveCertificate
# 高血压
# DiseaseNameOrComprehensiveCertificate
# 糖尿病
# DiseaseNameOrComprehensiveCertificate
# 肝炎
# DiseaseNameOrComprehensiveCertificate
# 结核
Source
From hit wi