starchat2-15b-v0.1 / README.md
li-muyang's picture
End of training
12caf52 verified
metadata
library_name: transformers
license: bigcode-openrail-m
base_model: bigcode/starcoder2-15b
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
  - trl
  - sft
  - generated_from_trainer
datasets:
  - HuggingFaceH4/airoboros-3.2
  - HuggingFaceH4/Code-Feedback
  - HuggingFaceH4/orca-math-word-problems-200k
  - HuggingFaceH4/SystemChat
  - HuggingFaceH4/capybara
model-index:
  - name: starchat2-15b-v0.1
    results: []

starchat2-15b-v0.1

This model is a fine-tuned version of bigcode/starcoder2-15b on the HuggingFaceH4/airoboros-3.2, the HuggingFaceH4/Code-Feedback, the HuggingFaceH4/orca-math-word-problems-200k, the HuggingFaceH4/SystemChat and the HuggingFaceH4/capybara datasets. It achieves the following results on the evaluation set:

  • Loss: 0.6601

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 32
  • total_train_batch_size: 128
  • total_eval_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.8402 0.1099 100 0.8307
0.7611 0.2198 200 0.7793
0.7361 0.3297 300 0.7525
0.6854 0.4396 400 0.7337
0.6926 0.5495 500 0.7197
0.7125 0.6593 600 0.7097
0.6662 0.7692 700 0.7015
0.6517 0.8791 800 0.6937
0.6234 0.9890 900 0.6869
0.5925 1.0989 1000 0.6866
0.585 1.2088 1100 0.6832
0.5857 1.3187 1200 0.6798
0.5736 1.4286 1300 0.6746
0.5906 1.5385 1400 0.6723
0.569 1.6484 1500 0.6686
0.5756 1.7582 1600 0.6655
0.545 1.8681 1700 0.6622
0.5505 1.9780 1800 0.6606
0.5149 2.0879 1900 0.6648
0.5234 2.1978 2000 0.6638
0.5239 2.3077 2100 0.6632
0.5142 2.4176 2200 0.6623
0.5086 2.5275 2300 0.6616
0.4998 2.6374 2400 0.6604
0.5029 2.7473 2500 0.6602
0.5146 2.8571 2600 0.6599
0.5293 2.9670 2700 0.6601

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+rocm6.2
  • Datasets 3.5.0
  • Tokenizers 0.20.3