li-jay-cs's picture
Model save
7104acb
metadata
license: mit
base_model: gpt2-medium
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: gpt2-medium-supervised-summarize-checkpoint
    results: []

gpt2-medium-supervised-summarize-checkpoint

This model is a fine-tuned version of gpt2-medium on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7422
  • Rouge1: 0.6035
  • Rouge2: 0.2047
  • Rougel: 0.4141
  • Rougelsum: 0.5319

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 50
  • eval_batch_size: 50
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
1.859 0.21 500 1.8105 0.5966 0.1961 0.4025 0.5237
1.852 0.43 1000 1.7900 0.5994 0.1981 0.4061 0.5271
1.8189 0.64 1500 1.7764 0.6000 0.2005 0.4082 0.5276
1.8191 0.86 2000 1.7695 0.6013 0.2009 0.4096 0.5290
1.7969 1.07 2500 1.7617 0.6038 0.2020 0.4108 0.5311
1.7967 1.28 3000 1.7578 0.6024 0.2024 0.4114 0.5304
1.7813 1.5 3500 1.7520 0.6038 0.2039 0.4128 0.5320
1.7704 1.71 4000 1.7480 0.6033 0.2045 0.4132 0.5310
1.7852 1.93 4500 1.7422 0.6035 0.2047 0.4141 0.5319

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0