lhallee's picture
End of training
fbbfd7e verified
metadata
library_name: transformers
base_model: ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
model-index:
  - name: se_train_run_AUTOIMMUNE
    results: []

se_train_run_AUTOIMMUNE

This model is a fine-tuned version of ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.8454
  • Model Preparation Time: 0.0023
  • F1: 0.9142
  • Precision: 0.8907
  • Recall: 0.939
  • Threshold: 0.6448
  • Sim Ratio: 1.8668
  • Pos Sim: 0.8175
  • Neg Sim: 0.4379

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time F1 Precision Recall Threshold Sim Ratio Pos Sim Neg Sim
1.1666 0.1600 5000 3.8219 0.0023 0.8785 0.8627 0.8949 0.6512 1.8895 0.8276 0.438
1.0768 0.3201 10000 3.7588 0.0023 0.8937 0.8788 0.9092 0.6407 2.0951 0.8217 0.3922
0.9115 0.4801 15000 4.0146 0.0023 0.9012 0.872 0.9324 0.6185 2.1225 0.8194 0.386
0.8536 0.6402 20000 3.5470 0.0023 0.906 0.869 0.9464 0.6418 1.8244 0.8317 0.4559
0.8147 0.8002 25000 3.8247 0.0023 0.9115 0.8849 0.9398 0.6342 1.9331 0.8186 0.4235
0.799 0.9603 30000 3.8038 0.0023 0.914 0.8991 0.9295 0.6584 1.8577 0.8189 0.4408

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1
  • Datasets 3.2.0
  • Tokenizers 0.21.0