See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Solar-10b-64k
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c77c3f7427cc6755_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c77c3f7427cc6755_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 100
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso08/6327705c-49b9-4714-8e58-fd2f1ca23058
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000208
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 800
micro_batch_size: 4
mlflow_experiment_name: /tmp/c77c3f7427cc6755_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
saves_per_epoch: null
seed: 80
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f5b4b805-5bc2-42ac-a909-e914a1d05432
wandb_project: 08a
wandb_run: your_name
wandb_runid: f5b4b805-5bc2-42ac-a909-e914a1d05432
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
6327705c-49b9-4714-8e58-fd2f1ca23058
This model is a fine-tuned version of NousResearch/Yarn-Solar-10b-64k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3018
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000208
- train_batch_size: 4
- eval_batch_size: 4
- seed: 80
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 800
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 0.6721 |
3.1287 | 0.0135 | 100 | 0.4423 |
3.0146 | 0.0271 | 200 | 0.4380 |
2.9837 | 0.0406 | 300 | 0.4099 |
2.8623 | 0.0542 | 400 | 0.3800 |
2.7309 | 0.0677 | 500 | 0.3479 |
2.5525 | 0.0813 | 600 | 0.3238 |
2.4616 | 0.0948 | 700 | 0.3050 |
2.4122 | 0.1083 | 800 | 0.3018 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for lesso08/6327705c-49b9-4714-8e58-fd2f1ca23058
Base model
NousResearch/Yarn-Solar-10b-64k