swe_30k_v2_tag5mini
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-7B-Instruct on the swe_30k_v2_tag5mini dataset. It achieves the following results on the evaluation set:
- Loss: 0.5374
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6038 | 0.0646 | 100 | 0.6196 |
0.6503 | 0.1293 | 200 | 0.5960 |
0.5604 | 0.1939 | 300 | 0.5876 |
0.7042 | 0.2586 | 400 | 0.5773 |
0.6817 | 0.3232 | 500 | 0.5707 |
0.5783 | 0.3878 | 600 | 0.5644 |
0.5492 | 0.4525 | 700 | 0.5592 |
0.5269 | 0.5171 | 800 | 0.5534 |
0.6711 | 0.5818 | 900 | 0.5493 |
0.5468 | 0.6464 | 1000 | 0.5443 |
0.5499 | 0.7111 | 1100 | 0.5413 |
0.6856 | 0.7757 | 1200 | 0.5392 |
0.6469 | 0.8403 | 1300 | 0.5385 |
0.5113 | 0.9050 | 1400 | 0.5379 |
0.538 | 0.9696 | 1500 | 0.5374 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support