Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: llamafactory/tiny-random-Llama-3
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 68075bd84f58e8d5_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/68075bd84f58e8d5_train_data.json
  type:
    field_input: ''
    field_instruction: article
    field_output: abstract
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: leixa/1f48f82a-444a-4413-b3c7-3c3ec3164473
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/68075bd84f58e8d5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: e6b739a5-d940-4aa7-a5e4-a1f0923c54b4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e6b739a5-d940-4aa7-a5e4-a1f0923c54b4
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

1f48f82a-444a-4413-b3c7-3c3ec3164473

This model is a fine-tuned version of llamafactory/tiny-random-Llama-3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.7627

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 11.7657
11.7638 0.0021 9 11.7656
11.7668 0.0042 18 11.7652
11.7618 0.0063 27 11.7648
11.7639 0.0084 36 11.7644
11.7632 0.0106 45 11.7640
11.7627 0.0127 54 11.7636
11.7658 0.0148 63 11.7632
11.7636 0.0169 72 11.7629
11.7613 0.0190 81 11.7628
11.7627 0.0211 90 11.7627
11.7609 0.0232 99 11.7627

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for leixa/1f48f82a-444a-4413-b3c7-3c3ec3164473

Adapter
(236)
this model