wav2vec2-base-sound2

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5012
  • Accuracy: 0.5357

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 2.0762 0.0714
No log 2.0 2 2.0638 0.1429
No log 3.0 3 2.0387 0.2143
No log 4.0 4 2.0124 0.2143
No log 5.0 5 1.9864 0.2143
No log 6.0 6 1.9609 0.2143
No log 7.0 7 1.9235 0.2143
No log 8.0 8 1.9379 0.2143
No log 9.0 9 1.8627 0.2857
1.9713 10.0 10 1.8277 0.3214
1.9713 11.0 11 1.7765 0.3571
1.9713 12.0 12 1.7204 0.5
1.9713 13.0 13 1.6956 0.5
1.9713 14.0 14 1.6602 0.5357
1.9713 15.0 15 1.6277 0.5714
1.9713 16.0 16 1.6053 0.5
1.9713 17.0 17 1.5825 0.5
1.9713 18.0 18 1.5656 0.4286
1.9713 19.0 19 1.5616 0.4643
1.6334 20.0 20 1.5613 0.4286
1.6334 21.0 21 1.5419 0.5
1.6334 22.0 22 1.5166 0.5357
1.6334 23.0 23 1.5088 0.5
1.6334 24.0 24 1.5052 0.5
1.6334 25.0 25 1.5012 0.5357

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 1.14.0
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.