Built with Axolotl

See axolotl config

axolotl version: 0.9.2

base_model: google/gemma-3-12b-it

#load_in_4bit: true
#auto_resume_from_checkpoints: true
# gemma3 doesn't seem to play nice with ddp
ddp_find_unused_parameters: true

tokenizer_config: le-llm/gemma-3-12b-it-reasoning-tokenizer
# added_tokens_overrides: {6: "<|begin_of_thought|>", 7: "<|end_of_thought|>", 8: "<|begin_of_solution|>", 9: "<|end_of_solution|>"}

chat_template: gemma3
eot_tokens:
  - <end_of_turn>
datasets:
  - path: le-llm/openthoughts-113k
    type: chat_template

    field_messages: conversations
    message_property_mappings:
      role: from
      content: value



dataset_processes: 64
#dataset_keep_in_memory: true
#dataloader_num_workers: 8
#dataloader_prefetch_factor: 16

chat_template: gemma3

dataset_prepared_path: last_run_prepared_reasoning
# val_set_size: 0.01
output_dir: ./outputs/gemma-3-12b-it-reasoning-tok-27b

#adapter: qlora
#lora_model_dir:
sequence_len: 32768 # 16384 # 2048
sample_packing: false # true
pad_to_sequence_len: true
train_on_inputs: true
tensor_parallel_size: 8
# tiled_mlp: true
#context_parallel_size: 8
# dp_shard_size: 4

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true


# spectrum
#- axolotl.integrations.spectrum.SpectrumPlugin
#spectrum_top_fraction: 0.5
#spectrum_model_name: google/gemma-3-12b-it

wandb_project: gemma-3-12b-reasoning
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_torch_fused # muon #adamw_bnb_8bit
lr_scheduler: warmup_stable_decay
learning_rate: 5e-5
lr_scheduler_kwargs: {"num_decay_steps": 150}

bf16: auto
# fp16:
tf32: false # TODO: double check precision impact

deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_all.json # deepspeed_configs/zero3_bf16.json

# TODO: When using FSDP full shard, instead of using `gradient_checkpointing` in TrainingArguments, please use `activation_checkpointing` in `fsdp_config`. The former introduces a redundant AllGather operation in backward pass. Reference: https://github.com/huggingface/transformers/issues/30404
#fsdp:
#  - full_shard
#  - auto_wrap
#fsdp_config:
#  fsdp_offload_params: true
#  fsdp_state_dict_type: FULL_STATE_DICT
#  fsdp_transformer_layer_cls_to_wrap: Gemma3DecoderLayer

#fp8: true
#fp8_enable_fsdp_float8_all_gather: true
#torch_compile: true

#fsdp:
#  - full_shard
#  - auto_wrap
#fsdp_config:
#  fsdp_version: 2
#  fsdp_offload_params: false
#  fsdp_cpu_ram_efficient_loading: false
#  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#  fsdp_transformer_layer_cls_to_wrap: Gemma3DecoderLayer
#  fsdp_state_dict_type: FULL_STATE_DICT
#  fsdp_sharding_strategy: FULL_SHARD
#  fsdp_reshard_after_forward: true
#  # fsdp_activation_checkpointing: true

gradient_checkpointing: true  # required for activation offloading
activation_offloading: legacy

#gradient_checkpointing: true
#gradient_checkpointing_kwargs:
#  use_reentrant: false
#activation_offloading: true
logging_steps: 1
flash_attention: true # not recommended for gemma3 due to soft logit capping, but it should be fixed in the lates flash attention
#eager_attention:
# torch_compile: True



warmup_steps: 150 #0.4
evals_per_epoch: 1
save_steps: 100
save_total_limit: 6
#saves_per_epoch: 1
weight_decay: 0.0

outputs/gemma-3-12b-it-reasoning-tok-27b

This model is a fine-tuned version of google/gemma-3-12b-it on the le-llm/openthoughts-113k dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 32
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: warmup_stable_decay
  • lr_scheduler_warmup_steps: 150
  • num_epochs: 1.0

Training results

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.2
Downloads last month
131
Safetensors
Model size
12.2B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for le-llm/gemma-3-12b-it-reasoning

Finetuned
(90)
this model

Dataset used to train le-llm/gemma-3-12b-it-reasoning