SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ldldld/snowflake-arctic-embed-m-finetuned")
# Run inference
sentences = [
"What are the implications of the digital divide highlighted in Andrew Kenney's article regarding unemployment benefits?",
'https://bipartisanpolicy.org/blog/the-low-down-on-ballot-curing/\n101. Andrew Kenney. \'I\'m shocked that they need to have a smartphone\': System for unemployment\nbenefits exposes digital divide. USA Today. May 2, 2021.\nhttps://www.usatoday.com/story/tech/news/2021/05/02/unemployment-benefits-system-leaving\xad\npeople-behind/4915248001/\n102. Allie Gross. UIA lawsuit shows how the state criminalizes the unemployed. Detroit Metro-Times.\nSep. 18, 2015.\nhttps://www.metrotimes.com/news/uia-lawsuit-shows-how-the-state-criminalizes-the\xad\nunemployed-2369412\n103. Maia Szalavitz. The Pain Was Unbearable. So Why Did Doctors Turn Her Away? Wired. Aug. 11,\n2021. https://www.wired.com/story/opioid-drug-addiction-algorithm-chronic-pain/\n104. Spencer Soper. Fired by Bot at Amazon: "It\'s You Against the Machine". Bloomberg, Jun. 28, 2021.\nhttps://www.bloomberg.com/news/features/2021-06-28/fired-by-bot-amazon-turns-to-machine\xad\nmanagers-and-workers-are-losing-out',
'5. Environmental Impacts: Impacts due to high compute resource utilization in training or \noperating GAI models, and related outcomes that may adversely impact ecosystems. \n6. Harmful Bias or Homogenization: Amplification and exacerbation of historical, societal, and \nsystemic biases; performance disparities8 between sub-groups or languages, possibly due to \nnon-representative training data, that result in discrimination, amplification of biases, or \nincorrect presumptions about performance; undesired homogeneity that skews system or model \noutputs, which may be erroneous, lead to ill-founded decision-making, or amplify harmful \nbiases. \n7. Human-AI Configuration: Arrangements of or interactions between a human and an AI system \nwhich can result in the human inappropriately anthropomorphizing GAI systems or experiencing \nalgorithmic aversion, automation bias, over-reliance, or emotional entanglement with GAI \nsystems.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.73 |
cosine_accuracy@3 | 0.9 |
cosine_accuracy@5 | 0.935 |
cosine_accuracy@10 | 0.96 |
cosine_precision@1 | 0.73 |
cosine_precision@3 | 0.3 |
cosine_precision@5 | 0.187 |
cosine_precision@10 | 0.096 |
cosine_recall@1 | 0.73 |
cosine_recall@3 | 0.9 |
cosine_recall@5 | 0.935 |
cosine_recall@10 | 0.96 |
cosine_ndcg@10 | 0.8512 |
cosine_mrr@10 | 0.8155 |
cosine_map@100 | 0.8172 |
dot_accuracy@1 | 0.73 |
dot_accuracy@3 | 0.9 |
dot_accuracy@5 | 0.935 |
dot_accuracy@10 | 0.96 |
dot_precision@1 | 0.73 |
dot_precision@3 | 0.3 |
dot_precision@5 | 0.187 |
dot_precision@10 | 0.096 |
dot_recall@1 | 0.73 |
dot_recall@3 | 0.9 |
dot_recall@5 | 0.935 |
dot_recall@10 | 0.96 |
dot_ndcg@10 | 0.8512 |
dot_mrr@10 | 0.8155 |
dot_map@100 | 0.8172 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 600 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 600 samples:
sentence_0 sentence_1 type string string details - min: 12 tokens
- mean: 20.66 tokens
- max: 34 tokens
- min: 21 tokens
- mean: 165.88 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 What is the main purpose of the "Blueprint for an AI Bill of Rights" as indicated in the context?
BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022When was the "Blueprint for an AI Bill of Rights" created?
BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022What was the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy in October 2022?
About this Document
The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was
published by the White House Office of Science and Technology Policy in October 2022. This framework was
released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered
world.” Its release follows a year of public engagement to inform this initiative. The framework is available
online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights
About the Office of Science and Technology Policy
The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology
Policy, Organization, and Priorities Act of 1976 to provide the President and others within the Executive Office
of the President with advice on the scientific, engineering, and technological aspects of the economy, national - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 20per_device_eval_batch_size
: 20num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 20per_device_eval_batch_size
: 20per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 30 | 0.7953 |
1.6667 | 50 | 0.8326 |
2.0 | 60 | 0.8277 |
3.0 | 90 | 0.8250 |
3.3333 | 100 | 0.8284 |
4.0 | 120 | 0.8200 |
5.0 | 150 | 0.8172 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ldldld/snowflake-arctic-embed-m-finetuned
Base model
Snowflake/snowflake-arctic-embed-mEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.730
- Cosine Accuracy@3 on Unknownself-reported0.900
- Cosine Accuracy@5 on Unknownself-reported0.935
- Cosine Accuracy@10 on Unknownself-reported0.960
- Cosine Precision@1 on Unknownself-reported0.730
- Cosine Precision@3 on Unknownself-reported0.300
- Cosine Precision@5 on Unknownself-reported0.187
- Cosine Precision@10 on Unknownself-reported0.096
- Cosine Recall@1 on Unknownself-reported0.730
- Cosine Recall@3 on Unknownself-reported0.900