krisschaaf's picture
krisschaaf/xlm-roberta-base-fake-news-german
58a29be verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: trainer_output
    results: []

trainer_output

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1952
  • Accuracy: 0.9533
  • F1: 0.9531
  • Precision: 0.9536
  • Recall: 0.9533

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 573
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2164 1.0 1147 0.2145 0.9150 0.9141 0.9159 0.9150
0.1446 2.0 2294 0.1533 0.9407 0.9400 0.9428 0.9407
0.113 3.0 3441 0.1595 0.9448 0.9443 0.9465 0.9448
0.065 4.0 4588 0.1783 0.9492 0.9492 0.9492 0.9492
0.0522 5.0 5735 0.2001 0.9507 0.9505 0.9509 0.9507

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1