Edit model card

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4435
  • Accuracy: 0.8111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5077 0.98 41 0.6378 0.6796
0.5111 1.99 83 0.7097 0.6577
0.5395 2.99 125 0.5374 0.7470
0.5498 4.0 167 0.5524 0.7420
0.4754 4.98 208 0.5324 0.7639
0.4662 5.99 250 0.4962 0.7639
0.4677 6.99 292 0.5070 0.7774
0.4525 8.0 334 0.5144 0.7673
0.4635 8.98 375 0.4978 0.7757
0.4309 9.99 417 0.5388 0.7774
0.4292 10.99 459 0.4937 0.7825
0.4182 12.0 501 0.5234 0.7808
0.4242 12.98 542 0.4539 0.7960
0.4053 13.99 584 0.5089 0.7858
0.4135 14.99 626 0.4655 0.8044
0.3888 16.0 668 0.4398 0.8212
0.3701 16.98 709 0.4258 0.8145
0.3641 17.99 751 0.4339 0.8196
0.3547 18.99 793 0.4556 0.7993
0.3623 19.64 820 0.4435 0.8111

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
19
Safetensors
Model size
27.5M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for krich97/swin-tiny-patch4-window7-224-finetuned-eurosat

Finetuned
(464)
this model

Evaluation results