|
--- |
|
license: apache-2.0 |
|
tags: |
|
- image-segmentation |
|
- vision |
|
- generated_from_trainer |
|
model-index: |
|
- name: segformer-finetuned-Maize-10k-steps-sem |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-finetuned-Maize-10k-steps-sem |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the koushikn/Maize_sem_seg dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0756 |
|
- Mean Iou: 0.9172 |
|
- Mean Accuracy: 0.9711 |
|
- Overall Accuracy: 0.9804 |
|
- Accuracy Background: 0.9834 |
|
- Accuracy Maize: 0.9588 |
|
- Iou Background: 0.9779 |
|
- Iou Maize: 0.8566 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 1337 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: polynomial |
|
- training_steps: 10000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Maize | Iou Background | Iou Maize | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:| |
|
| 0.0529 | 1.0 | 678 | 69.3785 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.3755 | 2.0 | 1356 | 0.9455 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.0603 | 3.0 | 2034 | 0.0920 | 0.8356 | 0.8602 | 0.9641 | 0.9976 | 0.7227 | 0.9607 | 0.7106 | |
|
| 0.0341 | 4.0 | 2712 | 24.6203 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.0332 | 5.0 | 3390 | 101.5635 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.0331 | 6.0 | 4068 | 9.6824 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.0302 | 7.0 | 4746 | 260.7923 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.0305 | 8.0 | 5424 | 172.8153 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.0313 | 9.0 | 6102 | 304.2714 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.0301 | 10.0 | 6780 | 547.2355 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.03 | 11.0 | 7458 | 224.2607 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.0285 | 12.0 | 8136 | 116.3474 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.0284 | 13.0 | 8814 | 96.8429 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.0281 | 14.0 | 9492 | 54.2593 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 | |
|
| 0.028 | 14.75 | 10000 | 0.0756 | 0.9172 | 0.9711 | 0.9804 | 0.9834 | 0.9588 | 0.9779 | 0.8566 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.0.dev0 |
|
- Pytorch 1.10.0+cu102 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|