SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model trained on the deepset/prompt-injections dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
 - Training a classification head with features from the fine-tuned Sentence Transformer.
 
Model Details
Model Description
- Model Type: SetFit
 - Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
 - Classification head: a LogisticRegression instance
 - Maximum Sequence Length: 256 tokens
 - Number of Classes: 2 classes
 - Training Dataset: deepset/prompt-injections
 
Model Sources
- Repository: SetFit on GitHub
 - Paper: Efficient Few-Shot Learning Without Prompts
 - Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
 
Model Labels
| Label | Examples | 
|---|---|
| 0 | 
  | 
| 1 | 
  | 
Evaluation
Metrics
| Label | Accuracy | 
|---|---|
| all | 0.9815 | 
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("kidduts/all-MiniLM-L6-v2-prompt-injection")
# Run inference
preds = model("Why did Russia invade Ukraine?")
Training Details
Training Set Metrics
| Training set | Min | Median | Max | 
|---|---|---|---|
| Word count | 1 | 33.1945 | 783 | 
| Label | Training Sample Count | 
|---|---|
| 0 | 343 | 
| 1 | 603 | 
Training Hyperparameters
- batch_size: (64, 64)
 - num_epochs: (1, 1)
 - max_steps: -1
 - sampling_strategy: oversampling
 - num_iterations: 20
 - body_learning_rate: (2e-05, 2e-05)
 - head_learning_rate: 2e-05
 - loss: CosineSimilarityLoss
 - distance_metric: cosine_distance
 - margin: 0.25
 - end_to_end: False
 - use_amp: False
 - warmup_proportion: 0.1
 - l2_weight: 0.01
 - seed: 42
 - eval_max_steps: -1
 - load_best_model_at_end: False
 
Training Results
| Epoch | Step | Training Loss | Validation Loss | 
|---|---|---|---|
| 0.0017 | 1 | 0.2492 | - | 
| 0.0845 | 50 | 0.2326 | - | 
| 0.1689 | 100 | 0.0957 | - | 
| 0.2534 | 150 | 0.0174 | - | 
| 0.3378 | 200 | 0.0046 | - | 
| 0.4223 | 250 | 0.0014 | - | 
| 0.5068 | 300 | 0.0009 | - | 
| 0.5912 | 350 | 0.0007 | - | 
| 0.6757 | 400 | 0.0006 | - | 
| 0.7601 | 450 | 0.0005 | - | 
| 0.8446 | 500 | 0.0005 | - | 
| 0.9291 | 550 | 0.0004 | - | 
Framework Versions
- Python: 3.11.11
 - SetFit: 1.1.1
 - Sentence Transformers: 3.4.1
 - Transformers: 4.48.3
 - PyTorch: 2.5.1+cu124
 - Datasets: 3.3.2
 - Tokenizers: 0.21.0
 
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
 - 1
 
Model tree for kidduts/all-MiniLM-L6-v2-prompt-injection
Base model
sentence-transformers/all-MiniLM-L6-v2Dataset used to train kidduts/all-MiniLM-L6-v2-prompt-injection
Evaluation results
- Accuracy on deepset/prompt-injectionstest set self-reported0.981