fine-tune-phobert-phone-sentiment

This model is a fine-tuned version of vinai/phobert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5014
  • Accuracy: 0.745
  • Auc: 0.835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Auc
0.6699 1.0 298 0.6424 0.666 0.771
0.6407 2.0 596 0.6114 0.701 0.797
0.6117 3.0 894 0.5846 0.72 0.804
0.5994 4.0 1192 0.5650 0.733 0.814
0.5836 5.0 1490 0.5511 0.736 0.818
0.5665 6.0 1788 0.5444 0.726 0.821
0.5645 7.0 2086 0.5317 0.736 0.824
0.5536 8.0 2384 0.5270 0.74 0.824
0.556 9.0 2682 0.5213 0.74 0.825
0.5463 10.0 2980 0.5174 0.737 0.829
0.5502 11.0 3278 0.5126 0.747 0.831
0.5434 12.0 3576 0.5096 0.743 0.831
0.5426 13.0 3874 0.5087 0.743 0.831
0.5347 14.0 4172 0.5095 0.739 0.831
0.5468 15.0 4470 0.5059 0.743 0.832
0.5364 16.0 4768 0.5038 0.743 0.833
0.5422 17.0 5066 0.5039 0.745 0.834
0.539 18.0 5364 0.5021 0.749 0.835
0.5237 19.0 5662 0.5016 0.743 0.835
0.5232 20.0 5960 0.5014 0.745 0.835

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
15
Safetensors
Model size
135M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for khanhTran03/fine-tune-phobert-phone-sentiment

Base model

vinai/phobert-base
Finetuned
(111)
this model