Hansung Bllossom | Demo | Developer ๊น€ํƒœ๋ฏผ | Github |

ํ•œ์„ฑ๋Œ€ํ•™๊ต QA ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šต์‹œํ‚จHansung-Bllossom-8B ๋ฅผ ์ถœ์‹œํ•ฉ๋‹ˆ๋‹ค.
์ด๋Š” MLP-KTLim/llama-3-Korean-Bllossom-8B ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

The Bllossom language model is a Korean-English bilingual language model based on the open-source LLama3. It enhances the connection of knowledge between Korean and English. It has the following features:

  • Knowledge Linking: Linking Korean and English knowledge through additional training
  • Vocabulary Expansion: Expansion of Korean vocabulary to enhance Korean expressiveness.
  • Instruction Tuning: Tuning using custom-made instruction following data specialized for Korean language and Korean culture
  • Human Feedback: DPO has been applied
  • Vision-Language Alignment: Aligning the vision transformer with this language model

Example code

Install Dependencies

pip install torch transformers==4.40.0 accelerate

Python code with Pipeline

import transformers
import torch

model_id = "kfkas/Hansung-Bllossom-8B"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

pipeline.model.eval()

PROMPT = '''๋‹น์‹ ์€ ์œ ์šฉํ•œ AI ์–ด์‹œ์Šคํ„ดํŠธ์ž…๋‹ˆ๋‹ค. ์‚ฌ์šฉ์ž์˜ ์งˆ์˜์— ๋Œ€ํ•ด ์นœ์ ˆํ•˜๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ๋‹ต๋ณ€ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
You are a helpful AI assistant, you'll need to answer users' queries in a friendly and accurate manner.'''
instruction = "ํ•œ์„ฑ๋Œ€ํ•™๊ต์—์„œ๋Š” ์–ด๋–ค ์ถ•์ œ๋‚˜ ํ–‰์‚ฌ๊ฐ€ ์—ด๋ฆฌ๋‚˜์š”?"

messages = [
    {"role": "system", "content": f"{PROMPT}"},
    {"role": "user", "content": f"{instruction}"}
    ]

prompt = pipeline.tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=2048,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9
)

print(outputs[0]["generated_text"][len(prompt):])

Python code with AutoModel


import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = 'kfkas/Hansung-Bllossom-8B'

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

model.eval()

PROMPT = '''๋‹น์‹ ์€ ์œ ์šฉํ•œ AI ์–ด์‹œ์Šคํ„ดํŠธ์ž…๋‹ˆ๋‹ค. ์‚ฌ์šฉ์ž์˜ ์งˆ์˜์— ๋Œ€ํ•ด ์นœ์ ˆํ•˜๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ๋‹ต๋ณ€ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
You are a helpful AI assistant, you'll need to answer users' queries in a friendly and accurate manner.'''
instruction = "ํ•œ์„ฑ๋Œ€ํ•™๊ต๋Š” ์–ธ์ œ ์„ค๋ฆฝ๋˜์—ˆ๋‚˜์š”?"

messages = [
    {"role": "system", "content": f"{PROMPT}"},
    {"role": "user", "content": f"{instruction}"}
    ]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=2048,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9
)

print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True))

Citation

Language Model

@misc{bllossom,
  author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim},
  title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean},
  year = {2024},
  journal = {LREC-COLING 2024},
  paperLink = {\url{https://arxiv.org/pdf/2403.10882}},
 },
}

Vision-Language Model

@misc{bllossom-V,
  author = {Dongjae Shin, Hyunseok Lim, Inho Won, Changsu Choi, Minjun Kim, Seungwoo Song, Hangyeol Yoo, Sangmin Kim, Kyungtae Lim},
  title = {X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment},
  year = {2024},
  publisher = {GitHub},
  journal = {NAACL 2024 findings},
  paperLink = {\url{https://arxiv.org/pdf/2403.11399}},
 },
}

Contact

Contributor

Downloads last month
5
Safetensors
Model size
8.17B params
Tensor type
BF16
ยท
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for kfkas/Hansung-Bllossom-8B

Finetuned
(388)
this model

Collection including kfkas/Hansung-Bllossom-8B