YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

โ–ฒ ๐Ÿ™‚

license: gpl-2.0

DCGAN to generate face images

This is an example notebook for Keras sprint prepared by Hugging Face. Keras Sprint aims to reproduce Keras examples and build interactive demos to them. The markdown parts beginning with ๐Ÿค— and the following code snippets are the parts added by the Hugging Face team to give you an example of how to host your model and build a demo.

Original Author of the DCGAN to generate face images Example: fchollet

Steps to Train the DCGAN

  1. Create the discriminator
  • It maps a 64x64 image to a binary classification score.

discriminator = keras.Sequential(
    [
        keras.Input(shape=(64, 64, 3)),
        layers.Conv2D(64, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Flatten(),
        layers.Dropout(0.2),
        layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)
  1. Create the generator
  • It mirrors the discriminator, replacing Conv2D layers with Conv2DTranspose layers

latent_dim = 128

generator = keras.Sequential(
    [
        keras.Input(shape=(latent_dim,)),
        layers.Dense(8 * 8 * 128),
        layers.Reshape((8, 8, 128)),
        layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Conv2DTranspose(512, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Conv2D(3, kernel_size=5, padding="same", activation="sigmoid"),
    ],
    name="generator",
)

HF Contributor: Tarun Jain

Downloads last month
6
Inference API
Unable to determine this modelโ€™s pipeline type. Check the docs .