π§ Model Name (ONNX Version)
This repository contains the ONNX-exported version of the keeper-security/xlm_base_8000
model, optimized for fast inference with ONNX Runtime.
π Quickstart
1. Install dependencies
pip install huggingface_hub onnxruntime transformers
2. Load the ONNX model and tokenizer
from huggingface_hub import hf_hub_download
import onnxruntime as ort
from transformers import AutoTokenizer
# Download the ONNX model from the Hub
model_path = hf_hub_download(
repo_id="keeper-security/xlm_base_8000_onnx_static_int8",
filename="model_quantized.onnx"
)
# Load the ONNX model
session = ort.InferenceSession(model_path)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("keeper-security/xlm_base_8000")
π₯ Inputs & Outputs
This model expects tokenized inputs with:
input_ids
attention_mask
π§ͺ Example Inference
import numpy as np
inputs = tokenizer("[URL]: https://signin.example.edu [HTML]: <input type='password' name='passwd'>", return_tensors="np")
# Run inference
outputs = session.run(None, {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"]
})
# Example: extract logits
logits = outputs[0]
pred_classes = np.argmax(logits, axis=-1)
pred_classes
π·οΈ Mapping Model Output to Labels
This inference code will return an int
between 0
and 44
, representing one of the 45 possible classes.
To convert the output index to a human-readable label, use the following mapping:
unique_labels = [
"ACCOUNT_CREATION_PASSWORD",
"ADDRESS_CITY",
"ADDRESS_COUNTRY",
"ADDRESS_LINE1",
"ADDRESS_LINE2",
"ADDRESS_STATE",
"ADDRESS_ZIP",
"ALTERNATIVE_FAMILY_NAME",
"ALTERNATIVE_FULL_NAME",
"ALTERNATIVE_GIVEN_NAME",
"AMBIGUOUS",
"BIRTH_DATE_DAY",
"BIRTH_DATE_MONTH",
"BIRTH_DATE_YEAR",
"COMPANY_NAME",
"CONFIRMATION_PASSWORD",
"CREDIT_CARD_EXP_DATE_MONTH_AND_YEAR",
"CREDIT_CARD_EXP_DATE_YEAR",
"CREDIT_CARD_EXP_MONTH",
"CREDIT_CARD_NUMBER",
"CREDIT_CARD_STANDALONE_VERIFICATION_CODE",
"CREDIT_CARD_TYPE",
"CREDIT_CARD_VERIFICATION_CODE",
"EMAIL_ADDRESS",
"IBAN_VALUE",
"MALICIOUS_LABEL",
"MERCHANT_EMAIL_SIGNUP",
"MERCHANT_PROMO_CODE",
"NAME_FIRST",
"NAME_FULL",
"NAME_LAST",
"NAME_MIDDLE",
"NAME_MIDDLE_INITIAL",
"NAME_PREFIX",
"NAME_SUFFIX",
"NATIONAL_IDENTITY_NUMBER",
"NEW_PASSWORD",
"PASSWORD",
"PHONE_NUMBER",
"PIN_CODE",
"PROBABLY_NEW_PASSWORD",
"SEARCH",
"TWO_FACTOR_CODE",
"UNKNOWN",
"USERNAME"
]
label2id = {label: i for i, label in enumerate(unique_labels)}
id2label = {i: label for label, i in label2id.items()}
# Example usage:
predicted_class_index = int(logits.argmax())
predicted_label = id2label[predicted_class_index]
print(predicted_label)
This will return a string label like "EMAIL_ADDRESS" or "PASSWORD" corresponding to the model's prediction.
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for keeper-security/xlm_base_8000_onnx_static_int8
Base model
FacebookAI/xlm-roberta-base