kbberendsen's picture
End of training
be5a2c9 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-base-uncased-finetuned-sst2-midterm
    results: []

distilbert-base-uncased-finetuned-sst2-midterm

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3341
  • Accuracy: 0.9048
  • F1: 0.9048
  • F1 0 Class: 0.9022
  • F1 1 Class: 0.9073
  • Precision 0 Class: 0.9097
  • Precision 1 Class: 0.9002
  • Recall 0 Class: 0.8949
  • Recall 1 Class: 0.9144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 F1 0 Class F1 1 Class Precision 0 Class Precision 1 Class Recall 0 Class Recall 1 Class
0.4244 1.0 109 0.2882 0.8842 0.8841 0.8790 0.8889 0.9017 0.8688 0.8575 0.9099
0.2289 2.0 218 0.2641 0.8922 0.8922 0.8889 0.8953 0.8995 0.8855 0.8785 0.9054
0.1517 3.0 327 0.3000 0.8933 0.8934 0.8930 0.8937 0.8798 0.9072 0.9065 0.8806
0.1048 4.0 436 0.3217 0.8991 0.8990 0.8952 0.9027 0.9126 0.8870 0.8785 0.9189
0.0767 5.0 545 0.3341 0.9048 0.9048 0.9022 0.9073 0.9097 0.9002 0.8949 0.9144

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2