results

This model is a fine-tuned version of SI2M-Lab/DarijaBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5291
  • Macro F1: 0.7697
  • Accuracy: 0.8007
  • Recall: 0.7687

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Macro F1 Accuracy Recall
0.6848 0.9877 40 0.6040 0.6869 0.7504 0.6821
0.5937 2.0 81 0.5376 0.7396 0.7799 0.7286
0.4946 2.9877 121 0.5313 0.7474 0.7816 0.7434
0.386 4.0 162 0.5291 0.7697 0.8007 0.7687
0.3114 4.9877 202 0.5690 0.7391 0.7782 0.7329
0.2477 6.0 243 0.5891 0.7480 0.7834 0.7441
0.1804 6.9877 283 0.6194 0.7422 0.7764 0.7366

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
106
Safetensors
Model size
147M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for kaouthardata/results

Finetuned
(7)
this model