|
--- |
|
language: |
|
- en |
|
license: mit |
|
base_model: |
|
- mistralai/Mistral-7B-v0.1 |
|
datasets: |
|
- argilla/distilabel-capybara-dpo-7k-binarized |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: Mistral-ORPO-Capybara-7k |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: AlpacaEval 2 (LC) |
|
type: AlpacaEval |
|
metrics: |
|
- type: AlpacaEval 2.0 |
|
value: 15.88% |
|
name: Win Rate |
|
source: |
|
url: https://tatsu-lab.github.io/alpaca_eval/ |
|
name: self-reported |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: MT-Bench |
|
type: MT-Bench |
|
metrics: |
|
- type: MT-Bench |
|
value: 7.444 |
|
name: Score |
|
source: |
|
url: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/ |
|
name: self-reported |
|
--- |
|
# **Mistral-ORPO-Capybara-7k (7B)** |
|
|
|
**Mistral-ORPO** is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using the *[odds ratio preference optimization (ORPO)](https://arxiv.org/abs/2403.07691)*. With ORPO, the model directly learns the preference without the supervised fine-tuning warmup phase. |
|
|
|
**Mistral-ORPO-ORPO-Capybara-7k** is fine-tuned for **2.5 hours on four A100s** exclusively on the **7k** instances of the distilled Capybara paired multi-turn conversation dataset, [argilla/distilabel-capybara-dpo-7k-binarized](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized), by [Argilla](https://huggingface.co/argilla). |
|
|
|
- **Github Repository**: https://github.com/xfactlab/orpo |
|
|
|
## 👍 **Model Performance** |
|
|
|
### 1) AlpacaEval & MT-Bench |
|
|
|
|Model Name|Size|Align|MT-Bench|AlpacaEval 2.0 (LC)| |
|
|:--------|:--------------:|:-------------------:|:------------:|:------------:| |
|
|**Mistral-<tt>ORPO</tt>-Capybara-7k**|7B|<tt>ORPO</tt>|7.44|15.9| |
|
|**Mistral-<tt>ORPO</tt>-β**|7B|<tt>ORPO</tt>|7.32|14.7| |
|
|Zephyr β |7B|DPO|7.34|13.2| |
|
|TULU-2-DPO |13B|DPO|7.00|11.6| |
|
|Llama-2-Chat |7B|RLHF|6.27|5.4| |
|
|Llama-2-Chat |13B|RLHF|6.65|8.4| |
|
|
|
### 2) IFEval |
|
|
|
| **Model Type** | **Prompt-Strict** | **Prompt-Loose** | **Inst-Strict** | **Inst-Loose** | |
|
|--------------------|:-----------------:|:----------------:|:---------------:|:--------------:| |
|
| **Mistral-ORPO-Capybara-7k** | 0.5083 | 0.5083 | 0.5827 | 0.6127 | |
|
| **Mistral-ORPO-⍺** | 0.5009 | 0.5083 | 0.5995 | 0.6163 | |
|
| **Mistral-ORPO-β** | 0.5287 | 0.5564 | 0.6355 | 0.6619 | |
|
|
|
## 🗺️ **MT-Bench by Category** |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6415c043486c7c9a5d151583/pmR91-0dpERqVvPqZ_IQg.png) |
|
|
|
## 🖥️ **Inference** |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
model = AutoModelForCausalLM.from_pretrained("kaist-ai/mistral-orpo-capybara-7k") |
|
tokenizer = AutoTokenizer.from_pretrained("kaist-ai/mistral-orpo-capybara-7k") |
|
# Apply chat template |
|
query = [{'role': 'user', 'content': 'Hi! How are you doing?'}] |
|
prompt = tokenizer.apply_chat_template(query, tokenize=False, add_generation_prompt=True) |
|
inputs = tokenizer(prompt, return_tensors='pt') |
|
# Generation with specific configurations |
|
output = model.generate( |
|
**inputs, |
|
max_new_tokens=128, |
|
do_sample=True, |
|
temperature=0.7 |
|
) |
|
response = tokenizer.batch_decode(output) |
|
#<|user|> |
|
#Hi! How are you doing?</s> |
|
#<|assistant|> |
|
#I'm doing well, thank you! How are you?</s> |
|
``` |
|
|
|
## 📎 **Citation** |
|
|
|
``` |
|
@misc{hong2024orpo, |
|
title={ORPO: Monolithic Preference Optimization without Reference Model}, |
|
author={Jiwoo Hong and Noah Lee and James Thorne}, |
|
year={2024}, |
|
eprint={2403.07691}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |