gemma2-2b-kor-deobfuscation / modeling_hangul_gemma_deobfuscator.py
jwengr's picture
Upload folder using huggingface_hub
f5ebd10 verified
import torch
import torch.nn as nn
from types import MethodType
from typing import List, Optional, Tuple, Union
from copy import deepcopy
from transformers import PretrainedConfig, PreTrainedModel, AutoModelForCausalLM, AutoConfig
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
class HangulGemmaDeobfuscatorConfig(PretrainedConfig):
model_type = "hangul_gemma_deobfuscator"
def __init__(
self,
base_model_name='unsloth/gemma-2-2b',
**kwargs
):
super().__init__(**kwargs)
self.base_model_name = base_model_name
class HangulGemmaDeobfuscator(PreTrainedModel):
config_class = HangulGemmaDeobfuscatorConfig
def __init__(self, config):
super().__init__(config)
self.base_model_config = AutoConfig.from_pretrained(config.base_model_name)
self.base_model_config.training = True
self.base_model_config._attn_implementation = 'eager'
self.base_model_config.sliding_window = 12
base_model = AutoModelForCausalLM.from_pretrained(config.base_model_name, config=self.base_model_config)
new_layers = []
layer_indices = [24, 25]
for i in range(len(base_model.model.layers)):
if i in layer_indices:
new_layers.append(deepcopy(base_model.model.layers[i]))
new_layers.append(base_model.model.layers[i])
new_layers = nn.ModuleList(new_layers)
base_model.model.layers = new_layers
base_model.config.num_hidden_layers = len(base_model.model.layers)
for layer_idx, layer in enumerate(base_model.model.layers):
layer.is_sliding = not bool(layer_idx % 2)
# 모델의 모든 레이어에 대해 forward 메서드를 교체
for idx, layer in enumerate(base_model.model.layers):
layer.forward = MethodType(decoder_forward, layer)
self.model = base_model
def load_hangul_tokenizer(self, hangul_tokenizer):
self.tokenizer = hangul_tokenizer
self.cho_ids = nn.Parameter(torch.LongTensor(self.tokenizer.cho_ids), requires_grad=False)
self.joong_ids = nn.Parameter(torch.LongTensor(self.tokenizer.joong_ids), requires_grad=False)
self.jong_ids = nn.Parameter(torch.LongTensor(self.tokenizer.jong_ids), requires_grad=False)
self.char_1ids = nn.Parameter(torch.LongTensor(self.tokenizer.char_1ids), requires_grad=False)
self.char_3ids = nn.Parameter(torch.LongTensor(self.tokenizer.char_3ids), requires_grad=False)
def forward(self, input_ids, attention_mask, token_type_ids, output_ids=None):
input_ids = torch.cat([
torch.full((input_ids.size(0), 1), self.tokenizer.base_tokenizer.bos_token_id, dtype=input_ids.dtype, device=input_ids.device),
input_ids,
], dim=1)
attention_mask = torch.cat([
torch.ones((attention_mask.size(0), 1), dtype=attention_mask.dtype, device=attention_mask.device),
attention_mask,
], dim=1)
attention_mask = _prepare_4d_attention_mask(attention_mask, self.model.dtype)
attention_mask = attention_mask == 0
logits = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
use_cache=False
).logits[:, :-1, :]
loss = None
if output_ids is not None:
loss = nn.CrossEntropyLoss(reduction='mean')(
logits.reshape(-1, self.model.config.vocab_size),
output_ids.reshape(-1),
)
return loss, logits
def pred_jamo_ids(
self,
logits,
input_ids,
token_type_ids,
):
pred_ids = input_ids.clone()
logits_cho = logits[token_type_ids==1][:, self.cho_ids]
logits_joong = logits[token_type_ids==2][:, self.joong_ids]
logits_jong = logits[token_type_ids==3][:, self.jong_ids]
pred_cho_ids = self.cho_ids[logits_cho.argmax(1)]
pred_joong_ids = self.joong_ids[logits_joong.argmax(1)]
pred_jong_ids = self.jong_ids[logits_jong.argmax(1)]
pred_ids[token_type_ids==1] = pred_cho_ids
pred_ids[token_type_ids==2] = pred_joong_ids
pred_ids[token_type_ids==3] = pred_jong_ids
return pred_ids
def pred_char_ids(
self,
logits,
input_ids,
token_type_ids
):
pred_ids = input_ids.clone()
logits_char = logits[token_type_ids==4]
if not len(logits_char):
return pred_ids
logits_char_chunks = logits_char.split(3)
pred_char_ids = []
for logits_char_chunk in logits_char_chunks:
if logits_char_chunk[0][self.char_1ids[:,0]].max() > logits_char_chunk[0][self.char_3ids[:,0]].max():
pred_char_ids.extend( self.char_1ids[ logits_char_chunk[0][self.char_1ids[:,0]].argmax() ] )
else:
logits_char_3ids = torch.stack([
logits_char_chunk[0][self.char_3ids[:,0]],
logits_char_chunk[1][self.char_3ids[:,1]],
logits_char_chunk[2][self.char_3ids[:,2]]
], 1)
pred_char_ids.extend( self.char_3ids[ logits_char_3ids.log_softmax(-1).sum(1).argmax() ] )
pred_ids[token_type_ids==4] = torch.LongTensor(pred_char_ids).type_as(pred_ids)
return pred_ids
def _deobfuscate_by_syllable(self, sentence):
sentences = [sentence]
char_input_ids, char_attention_mask, char_token_type_ids = self.tokenizer.batch_encode_char(sentences)
char_input_ids, char_attention_mask, char_token_type_ids = char_input_ids.to(self.device), char_attention_mask.to(self.device), char_token_type_ids.to(self.device)
_, logits_char = self(char_input_ids, char_attention_mask, char_token_type_ids)
pred_char_ids = self.pred_char_ids(logits_char, char_input_ids, char_token_type_ids)
pred_char_ids = pred_char_ids.detach().to('cpu').tolist()
char_token_type_ids = char_token_type_ids.detach().to('cpu').tolist()
decoded = self.tokenizer.decode_char(pred_char_ids[0],char_token_type_ids[0])
return decoded
def _deobfuscate(self, sentence):
sentences = [sentence]
char_input_ids, char_attention_mask, char_token_type_ids = self.tokenizer.batch_encode_char(sentences)
char_input_ids, char_attention_mask, char_token_type_ids = char_input_ids.to(self.device), char_attention_mask.to(self.device), char_token_type_ids.to(self.device)
_, logits_char = self(char_input_ids, char_attention_mask, char_token_type_ids)
pred_char_ids = self.pred_char_ids(logits_char, char_input_ids, char_token_type_ids)
pred_char_ids = pred_char_ids.detach().to('cpu').tolist()
char_token_type_ids = char_token_type_ids.detach().to('cpu').tolist()
jamo_input_ids, jamo_attention_mask, jamo_token_type_ids = self.tokenizer.batch_encode_jamo_from_char_encoded(pred_char_ids, char_token_type_ids)
jamo_input_ids, jamo_attention_mask, jamo_token_type_ids = jamo_input_ids.type_as(char_input_ids), jamo_attention_mask.type_as(char_attention_mask), jamo_token_type_ids.type_as(jamo_attention_mask)
_, logits_jamo = self(jamo_input_ids, jamo_attention_mask, jamo_token_type_ids)
pred_jamo_ids = self.pred_jamo_ids(logits_jamo, jamo_input_ids, jamo_token_type_ids)
pred_jamo_ids = pred_jamo_ids.detach().to('cpu').tolist()
y_pred = [self.tokenizer.decode_jamo(pred_jamo_id, jamo_token_type_id) for pred_jamo_id, jamo_token_type_id in zip(pred_jamo_ids, jamo_token_type_ids.tolist())]
return y_pred[0]
def deobfuscate(self, sentence, sentence_tokenizer=None):
if sentence_tokenizer is not None:
chunks_row = sentence_tokenizer.tokenize(sentence)
chunks_overlap_row = sentence_tokenizer.overlap(chunks_row)
row = []
for start_idx, end_idx, chunk_overlap_row in chunks_overlap_row:
row.append((start_idx, end_idx, self._deobfuscate(chunk_overlap_row)))
return sentence_tokenizer.decode_overlap(row)
else:
return self._deobfuscate(sentence)
def decoder_forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value=None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
last_cache_position: int = 0,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
attention_mask = torch.tril(torch.triu(attention_mask, diagonal=-self.sliding_window), diagonal=self.sliding_window)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs