File size: 9,989 Bytes
61ddbf5
 
 
 
06b1bd7
61ddbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b1bd7
61ddbf5
 
 
 
 
 
 
 
 
 
06b1bd7
61ddbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b1bd7
 
 
 
f5ebd10
06b1bd7
f5ebd10
 
06b1bd7
 
 
 
 
61ddbf5
 
 
06b1bd7
 
 
 
 
 
 
 
 
 
 
61ddbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b1bd7
61ddbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import torch.nn as nn

from types import MethodType
from typing import List, Optional, Tuple, Union
from copy import deepcopy
from transformers import PretrainedConfig, PreTrainedModel, AutoModelForCausalLM, AutoConfig
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask

class HangulGemmaDeobfuscatorConfig(PretrainedConfig):
    model_type = "hangul_gemma_deobfuscator"
    
    def __init__(
        self,
        base_model_name='unsloth/gemma-2-2b',
        **kwargs
    ):
        super().__init__(**kwargs)
        self.base_model_name = base_model_name


class HangulGemmaDeobfuscator(PreTrainedModel):
    config_class = HangulGemmaDeobfuscatorConfig

    def __init__(self, config):
        super().__init__(config)
        self.base_model_config = AutoConfig.from_pretrained(config.base_model_name)
        self.base_model_config.training = True
        self.base_model_config._attn_implementation = 'eager'
        self.base_model_config.sliding_window = 12
        base_model = AutoModelForCausalLM.from_pretrained(config.base_model_name, config=self.base_model_config)

        new_layers = []
        layer_indices = [24, 25]
        for i in range(len(base_model.model.layers)):
            if i in layer_indices:
                new_layers.append(deepcopy(base_model.model.layers[i]))
            new_layers.append(base_model.model.layers[i])
        new_layers = nn.ModuleList(new_layers)
        base_model.model.layers = new_layers
        base_model.config.num_hidden_layers = len(base_model.model.layers)
        
        for layer_idx, layer in enumerate(base_model.model.layers):
            layer.is_sliding = not bool(layer_idx % 2)
        
        # 모델의 모든 레이어에 대해 forward 메서드를 교체
        for idx, layer in enumerate(base_model.model.layers):
            layer.forward = MethodType(decoder_forward, layer)
            
        self.model = base_model

    def load_hangul_tokenizer(self, hangul_tokenizer):
        self.tokenizer = hangul_tokenizer
        self.cho_ids = nn.Parameter(torch.LongTensor(self.tokenizer.cho_ids), requires_grad=False)
        self.joong_ids = nn.Parameter(torch.LongTensor(self.tokenizer.joong_ids), requires_grad=False)
        self.jong_ids = nn.Parameter(torch.LongTensor(self.tokenizer.jong_ids), requires_grad=False)
        self.char_1ids = nn.Parameter(torch.LongTensor(self.tokenizer.char_1ids), requires_grad=False)
        self.char_3ids = nn.Parameter(torch.LongTensor(self.tokenizer.char_3ids), requires_grad=False)
        
    def forward(self, input_ids, attention_mask, token_type_ids, output_ids=None):
        input_ids = torch.cat([
            torch.full((input_ids.size(0), 1), self.tokenizer.base_tokenizer.bos_token_id, dtype=input_ids.dtype, device=input_ids.device),
            input_ids,
        ], dim=1)

        attention_mask = torch.cat([
            torch.ones((attention_mask.size(0), 1), dtype=attention_mask.dtype, device=attention_mask.device),
            attention_mask,
        ], dim=1)
        attention_mask = _prepare_4d_attention_mask(attention_mask, self.model.dtype)
        attention_mask = attention_mask == 0

        logits = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            use_cache=False
        ).logits[:, :-1, :]

        loss = None
        if output_ids is not None:
            loss = nn.CrossEntropyLoss(reduction='mean')(
                logits.reshape(-1, self.model.config.vocab_size),
                output_ids.reshape(-1),
            )
        return loss, logits

    def pred_jamo_ids(
        self,
        logits,
        input_ids,
        token_type_ids,
    ):
        pred_ids = input_ids.clone()
        logits_cho = logits[token_type_ids==1][:, self.cho_ids]
        logits_joong = logits[token_type_ids==2][:, self.joong_ids]
        logits_jong = logits[token_type_ids==3][:, self.jong_ids]
        pred_cho_ids = self.cho_ids[logits_cho.argmax(1)]
        pred_joong_ids = self.joong_ids[logits_joong.argmax(1)]
        pred_jong_ids = self.jong_ids[logits_jong.argmax(1)]
        pred_ids[token_type_ids==1] = pred_cho_ids
        pred_ids[token_type_ids==2] = pred_joong_ids
        pred_ids[token_type_ids==3] = pred_jong_ids
        return pred_ids

    def pred_char_ids(
        self,
        logits,
        input_ids,
        token_type_ids
    ):
        pred_ids = input_ids.clone()
        logits_char = logits[token_type_ids==4]
        if not len(logits_char):
            return pred_ids
        logits_char_chunks = logits_char.split(3)
        pred_char_ids = []
        for logits_char_chunk in logits_char_chunks:
            if logits_char_chunk[0][self.char_1ids[:,0]].max() > logits_char_chunk[0][self.char_3ids[:,0]].max():
                pred_char_ids.extend( self.char_1ids[ logits_char_chunk[0][self.char_1ids[:,0]].argmax() ] )
            else:
                logits_char_3ids = torch.stack([
                    logits_char_chunk[0][self.char_3ids[:,0]], 
                    logits_char_chunk[1][self.char_3ids[:,1]], 
                    logits_char_chunk[2][self.char_3ids[:,2]]
                ], 1)
                pred_char_ids.extend( self.char_3ids[ logits_char_3ids.log_softmax(-1).sum(1).argmax() ] )
        pred_ids[token_type_ids==4] = torch.LongTensor(pred_char_ids).type_as(pred_ids)
        return pred_ids

    def _deobfuscate_by_syllable(self, sentence):
        sentences = [sentence]
        char_input_ids, char_attention_mask, char_token_type_ids = self.tokenizer.batch_encode_char(sentences)
        char_input_ids, char_attention_mask, char_token_type_ids = char_input_ids.to(self.device), char_attention_mask.to(self.device), char_token_type_ids.to(self.device)
        _, logits_char = self(char_input_ids, char_attention_mask, char_token_type_ids)
        pred_char_ids = self.pred_char_ids(logits_char, char_input_ids, char_token_type_ids)
        pred_char_ids = pred_char_ids.detach().to('cpu').tolist()
        char_token_type_ids = char_token_type_ids.detach().to('cpu').tolist()
        decoded = self.tokenizer.decode_char(pred_char_ids[0],char_token_type_ids[0])
        return decoded

    def _deobfuscate(self, sentence):
        sentences = [sentence]
        char_input_ids, char_attention_mask, char_token_type_ids = self.tokenizer.batch_encode_char(sentences)
        char_input_ids, char_attention_mask, char_token_type_ids = char_input_ids.to(self.device), char_attention_mask.to(self.device), char_token_type_ids.to(self.device)
        _, logits_char = self(char_input_ids, char_attention_mask, char_token_type_ids)
        pred_char_ids = self.pred_char_ids(logits_char, char_input_ids, char_token_type_ids)
        pred_char_ids = pred_char_ids.detach().to('cpu').tolist()
        char_token_type_ids = char_token_type_ids.detach().to('cpu').tolist()

        jamo_input_ids, jamo_attention_mask, jamo_token_type_ids = self.tokenizer.batch_encode_jamo_from_char_encoded(pred_char_ids, char_token_type_ids)
        jamo_input_ids, jamo_attention_mask, jamo_token_type_ids = jamo_input_ids.type_as(char_input_ids), jamo_attention_mask.type_as(char_attention_mask), jamo_token_type_ids.type_as(jamo_attention_mask)
        _, logits_jamo = self(jamo_input_ids, jamo_attention_mask, jamo_token_type_ids)
        pred_jamo_ids = self.pred_jamo_ids(logits_jamo, jamo_input_ids, jamo_token_type_ids)
        pred_jamo_ids = pred_jamo_ids.detach().to('cpu').tolist()
        y_pred = [self.tokenizer.decode_jamo(pred_jamo_id, jamo_token_type_id) for pred_jamo_id, jamo_token_type_id in zip(pred_jamo_ids, jamo_token_type_ids.tolist())]
        return y_pred[0]

    def deobfuscate(self, sentence, sentence_tokenizer=None):
        if sentence_tokenizer is not None:
            chunks_row = sentence_tokenizer.tokenize(sentence)
            chunks_overlap_row = sentence_tokenizer.overlap(chunks_row)
            row = []
            for start_idx, end_idx, chunk_overlap_row in chunks_overlap_row:
                row.append((start_idx, end_idx, self._deobfuscate(chunk_overlap_row)))
            return sentence_tokenizer.decode_overlap(row)
        else:
            return self._deobfuscate(sentence)
                
        


def decoder_forward(
    self,
    hidden_states: torch.Tensor,
    position_embeddings: Tuple[torch.Tensor, torch.Tensor],
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value=None,
    output_attentions: Optional[bool] = False,
    use_cache: Optional[bool] = False,
    cache_position: Optional[torch.LongTensor] = None,
    last_cache_position: int = 0,
    **kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
    if self.is_sliding and attention_mask is not None:  # efficient SDPA and no padding
        attention_mask = torch.tril(torch.triu(attention_mask, diagonal=-self.sliding_window), diagonal=self.sliding_window)

    residual = hidden_states

    hidden_states = self.input_layernorm(hidden_states)

    # Self Attention
    hidden_states, self_attn_weights = self.self_attn(
        hidden_states=hidden_states,
        position_embeddings=position_embeddings,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_value=past_key_value,
        output_attentions=output_attentions,
        use_cache=use_cache,
        cache_position=cache_position,
        **kwargs,
    )
    hidden_states = self.post_attention_layernorm(hidden_states)
    hidden_states = residual + hidden_states

    residual = hidden_states
    hidden_states = self.pre_feedforward_layernorm(hidden_states)
    hidden_states = self.mlp(hidden_states)
    hidden_states = self.post_feedforward_layernorm(hidden_states)
    hidden_states = residual + hidden_states

    outputs = (hidden_states,)

    if output_attentions:
        outputs += (self_attn_weights,)

    return outputs