metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:16681525
- loss:MSELoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: 舞台デザイン Scott Pask
sentences:
- Shore is a fine strappin’ man for shore!”
- 3年間、空軍に所属。
- >-
近年、カイン、カチンおよびシャン州などいくつかの少数民族居住地域では、紛争が再発、あるいは激化しており、ビルマ国軍による市民への広範で組織的な人権侵害が続いていると報告されています。
- source_sentence: で再放送があると またまたまたまたまた見てしまう・・・1991年の今頃(冬)の作品。
sentences:
- これを書いたコラムニストは言う。
- >-
How might one who is battling negative feelings gain a more positive
viewpoint?
- 彼女は彼に何もしてあげるつもりはない。
- source_sentence: When you feel something in your heart, it is a true feeling.
sentences:
- できたコースターなど。
- >-
But reflecting that it would be a good two hours at least before his
arrival she concluded to go up the road to Robert Bell’s and tell them
the news.
- ‘ THERE they are again!
- source_sentence: あなた は イエス の 名 に よっ て『ひざ を かがめる』でしょ う か。
sentences:
- >-
主治 医 は , やっ て みる 価値 は ある と 判断 し , それら の 抗生物質 を
処方 し て くれ まし た。
- So he must have been due a rest in in 2015, surely?
- わたしたちをあなたの愛の道具としてくださいますように。
- source_sentence: No.
sentences:
- >-
Today, while mankind as a whole can make no headway in abolishing war,
there is again a group of people who have achieved this same remarkable
goal.
- >-
They are not among those who are happy because of being conscious of
their spiritual need. ’
- >-
Do not Jesus ’ words help us to appreciate what Jehovah really wants
from us?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: STSbenchmark en test
type: STSbenchmark-en-test
metrics:
- type: pearson_cosine
value: 0.7900115146348707
name: Pearson Cosine
- type: spearman_cosine
value: 0.8206080071379148
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: JSTS validation
type: JSTS-validation
metrics:
- type: pearson_cosine
value: 0.830334965166667
name: Pearson Cosine
- type: spearman_cosine
value: 0.7832534974732547
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'No.',
'Today, while mankind as a whole can make no headway in abolishing war, there is again a group of people who have achieved this same remarkable goal.',
'Do not Jesus ’ words help us to appreciate what Jehovah really wants from us?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
STSbenchmark-en-test
andJSTS-validation
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | STSbenchmark-en-test | JSTS-validation |
---|---|---|
pearson_cosine | 0.79 | 0.8303 |
spearman_cosine | 0.8206 | 0.7833 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 16,681,525 training samples
- Columns:
english
andlabel
- Approximate statistics based on the first 1000 samples:
english label type string list details - min: 4 tokens
- mean: 24.06 tokens
- max: 128 tokens
- size: 384 elements
- Samples:
english label Before being used as a Kingdom Hall, it is cleared of any relics of false worship.
[0.07804396003484726, -0.03384765610098839, -0.02494540810585022, -0.07025666534900665, 0.07451561838388443, ...]
That girl always appeared from somewhere and followed me around.
[0.032411519438028336, -0.014580070041120052, -0.005011037457734346, -0.030591191723942757, 0.10543882101774216, ...]
いいえ そういう高い創造力を 保ち続ける科学者は 平均すると 最初の研究論文100編で 43回もトピックを変えていました
[0.041001513600349426, -0.0013687843456864357, -0.017593644559383392, -0.03798963502049446, 0.07939894497394562, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 512gradient_accumulation_steps
: 2learning_rate
: 0.0003num_train_epochs
: 8warmup_ratio
: 0.15bf16
: Truedataloader_num_workers
: 8load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0003weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.15warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 8dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | STSbenchmark-en-test_spearman_cosine | JSTS-validation_spearman_cosine |
---|---|---|---|---|
0.0307 | 500 | 0.004 | - | - |
0.0614 | 1000 | 0.0013 | - | - |
0.0921 | 1500 | 0.0011 | - | - |
0.1228 | 2000 | 0.0011 | 0.1715 | 0.2170 |
0.1535 | 2500 | 0.0011 | - | - |
0.1842 | 3000 | 0.001 | - | - |
0.2148 | 3500 | 0.001 | - | - |
0.2455 | 4000 | 0.001 | 0.3243 | 0.3289 |
0.2762 | 4500 | 0.0009 | - | - |
0.3069 | 5000 | 0.0009 | - | - |
0.3376 | 5500 | 0.0008 | - | - |
0.3683 | 6000 | 0.0008 | 0.4725 | 0.5123 |
0.3990 | 6500 | 0.0007 | - | - |
0.4297 | 7000 | 0.0007 | - | - |
0.4604 | 7500 | 0.0007 | - | - |
0.4911 | 8000 | 0.0006 | 0.5669 | 0.6228 |
0.5218 | 8500 | 0.0006 | - | - |
0.5525 | 9000 | 0.0006 | - | - |
0.5831 | 9500 | 0.0006 | - | - |
0.6138 | 10000 | 0.0005 | 0.6407 | 0.6840 |
0.6445 | 10500 | 0.0005 | - | - |
0.6752 | 11000 | 0.0005 | - | - |
0.7059 | 11500 | 0.0005 | - | - |
0.7366 | 12000 | 0.0005 | 0.6953 | 0.7212 |
0.7673 | 12500 | 0.0005 | - | - |
0.7980 | 13000 | 0.0004 | - | - |
0.8287 | 13500 | 0.0004 | - | - |
0.8594 | 14000 | 0.0004 | 0.7358 | 0.7510 |
0.8901 | 14500 | 0.0004 | - | - |
0.9208 | 15000 | 0.0004 | - | - |
0.9514 | 15500 | 0.0004 | - | - |
0.9821 | 16000 | 0.0004 | 0.7550 | 0.7612 |
1.0128 | 16500 | 0.0003 | - | - |
1.0435 | 17000 | 0.0003 | - | - |
1.0742 | 17500 | 0.0003 | - | - |
1.1049 | 18000 | 0.0003 | 0.7807 | 0.7739 |
1.1356 | 18500 | 0.0003 | - | - |
1.1663 | 19000 | 0.0003 | - | - |
1.1970 | 19500 | 0.0003 | - | - |
1.2277 | 20000 | 0.0003 | 0.8003 | 0.7781 |
1.2584 | 20500 | 0.0003 | - | - |
1.2891 | 21000 | 0.0003 | - | - |
1.3197 | 21500 | 0.0003 | - | - |
1.3504 | 22000 | 0.0002 | 0.8050 | 0.7780 |
1.3811 | 22500 | 0.0002 | - | - |
1.4118 | 23000 | 0.0002 | - | - |
1.4425 | 23500 | 0.0002 | - | - |
1.4732 | 24000 | 0.0002 | 0.8098 | 0.7788 |
1.5039 | 24500 | 0.0002 | - | - |
1.5346 | 25000 | 0.0002 | - | - |
1.5653 | 25500 | 0.0002 | - | - |
1.5960 | 26000 | 0.0002 | 0.8147 | 0.7804 |
1.6267 | 26500 | 0.0002 | - | - |
1.6574 | 27000 | 0.0002 | - | - |
1.6880 | 27500 | 0.0002 | - | - |
1.7187 | 28000 | 0.0002 | 0.8136 | 0.7762 |
1.7494 | 28500 | 0.0002 | - | - |
1.7801 | 29000 | 0.0002 | - | - |
1.8108 | 29500 | 0.0002 | - | - |
1.8415 | 30000 | 0.0002 | 0.8138 | 0.7784 |
1.8722 | 30500 | 0.0002 | - | - |
1.9029 | 31000 | 0.0002 | - | - |
1.9336 | 31500 | 0.0002 | - | - |
1.9643 | 32000 | 0.0002 | 0.8161 | 0.7812 |
1.9950 | 32500 | 0.0002 | - | - |
2.0257 | 33000 | 0.0002 | - | - |
2.0564 | 33500 | 0.0002 | - | - |
2.0870 | 34000 | 0.0002 | 0.8140 | 0.7790 |
2.1177 | 34500 | 0.0002 | - | - |
2.1484 | 35000 | 0.0002 | - | - |
2.1791 | 35500 | 0.0002 | - | - |
2.2098 | 36000 | 0.0002 | 0.8136 | 0.7815 |
2.2405 | 36500 | 0.0002 | - | - |
2.2712 | 37000 | 0.0002 | - | - |
2.3019 | 37500 | 0.0002 | - | - |
2.3326 | 38000 | 0.0002 | 0.8165 | 0.7811 |
2.3633 | 38500 | 0.0002 | - | - |
2.3940 | 39000 | 0.0002 | - | - |
2.4247 | 39500 | 0.0002 | - | - |
2.4553 | 40000 | 0.0002 | 0.8157 | 0.7822 |
2.4860 | 40500 | 0.0002 | - | - |
2.5167 | 41000 | 0.0002 | - | - |
2.5474 | 41500 | 0.0002 | - | - |
2.5781 | 42000 | 0.0002 | 0.8149 | 0.7819 |
2.6088 | 42500 | 0.0002 | - | - |
2.6395 | 43000 | 0.0002 | - | - |
2.6702 | 43500 | 0.0002 | - | - |
2.7009 | 44000 | 0.0002 | 0.8167 | 0.7812 |
2.7316 | 44500 | 0.0002 | - | - |
2.7623 | 45000 | 0.0002 | - | - |
2.7930 | 45500 | 0.0002 | - | - |
2.8236 | 46000 | 0.0002 | 0.8146 | 0.7829 |
2.8543 | 46500 | 0.0002 | - | - |
2.8850 | 47000 | 0.0002 | - | - |
2.9157 | 47500 | 0.0002 | - | - |
2.9464 | 48000 | 0.0002 | 0.8162 | 0.7817 |
2.9771 | 48500 | 0.0002 | - | - |
3.0078 | 49000 | 0.0002 | - | - |
3.0385 | 49500 | 0.0002 | - | - |
3.0692 | 50000 | 0.0002 | 0.8155 | 0.7818 |
3.0999 | 50500 | 0.0002 | - | - |
3.1306 | 51000 | 0.0002 | - | - |
3.1613 | 51500 | 0.0002 | - | - |
3.1919 | 52000 | 0.0002 | 0.8160 | 0.7813 |
3.2226 | 52500 | 0.0001 | - | - |
3.2533 | 53000 | 0.0001 | - | - |
3.2840 | 53500 | 0.0001 | - | - |
3.3147 | 54000 | 0.0001 | 0.8190 | 0.7822 |
3.3454 | 54500 | 0.0001 | - | - |
3.3761 | 55000 | 0.0001 | - | - |
3.4068 | 55500 | 0.0001 | - | - |
3.4375 | 56000 | 0.0001 | 0.8172 | 0.7834 |
3.4682 | 56500 | 0.0001 | - | - |
3.4989 | 57000 | 0.0001 | - | - |
3.5296 | 57500 | 0.0001 | - | - |
3.5602 | 58000 | 0.0001 | 0.8175 | 0.7822 |
3.5909 | 58500 | 0.0001 | - | - |
3.6216 | 59000 | 0.0001 | - | - |
3.6523 | 59500 | 0.0001 | - | - |
3.6830 | 60000 | 0.0001 | 0.8188 | 0.7827 |
3.7137 | 60500 | 0.0001 | - | - |
3.7444 | 61000 | 0.0001 | - | - |
3.7751 | 61500 | 0.0001 | - | - |
3.8058 | 62000 | 0.0001 | 0.8162 | 0.7829 |
3.8365 | 62500 | 0.0001 | - | - |
3.8672 | 63000 | 0.0001 | - | - |
3.8979 | 63500 | 0.0001 | - | - |
3.9285 | 64000 | 0.0001 | 0.8185 | 0.7814 |
3.9592 | 64500 | 0.0001 | - | - |
3.9899 | 65000 | 0.0001 | - | - |
4.0206 | 65500 | 0.0001 | - | - |
4.0513 | 66000 | 0.0001 | 0.8174 | 0.7839 |
4.0820 | 66500 | 0.0001 | - | - |
4.1127 | 67000 | 0.0001 | - | - |
4.1434 | 67500 | 0.0001 | - | - |
4.1741 | 68000 | 0.0001 | 0.8174 | 0.7827 |
4.2048 | 68500 | 0.0001 | - | - |
4.2355 | 69000 | 0.0001 | - | - |
4.2662 | 69500 | 0.0001 | - | - |
4.2969 | 70000 | 0.0001 | 0.8166 | 0.7833 |
4.3275 | 70500 | 0.0001 | - | - |
4.3582 | 71000 | 0.0001 | - | - |
4.3889 | 71500 | 0.0001 | - | - |
4.4196 | 72000 | 0.0001 | 0.8190 | 0.7837 |
4.4503 | 72500 | 0.0001 | - | - |
4.4810 | 73000 | 0.0001 | - | - |
4.5117 | 73500 | 0.0001 | - | - |
4.5424 | 74000 | 0.0001 | 0.8188 | 0.7837 |
4.5731 | 74500 | 0.0001 | - | - |
4.6038 | 75000 | 0.0001 | - | - |
4.6345 | 75500 | 0.0001 | - | - |
4.6652 | 76000 | 0.0001 | 0.8186 | 0.7829 |
4.6958 | 76500 | 0.0001 | - | - |
4.7265 | 77000 | 0.0001 | - | - |
4.7572 | 77500 | 0.0001 | - | - |
4.7879 | 78000 | 0.0001 | 0.8188 | 0.7839 |
4.8186 | 78500 | 0.0001 | - | - |
4.8493 | 79000 | 0.0001 | - | - |
4.8800 | 79500 | 0.0001 | - | - |
4.9107 | 80000 | 0.0001 | 0.8187 | 0.7830 |
4.9414 | 80500 | 0.0001 | - | - |
4.9721 | 81000 | 0.0001 | - | - |
5.0028 | 81500 | 0.0001 | - | - |
5.0335 | 82000 | 0.0001 | 0.8200 | 0.7829 |
5.0641 | 82500 | 0.0001 | - | - |
5.0948 | 83000 | 0.0001 | - | - |
5.1255 | 83500 | 0.0001 | - | - |
5.1562 | 84000 | 0.0001 | 0.8195 | 0.7842 |
5.1869 | 84500 | 0.0001 | - | - |
5.2176 | 85000 | 0.0001 | - | - |
5.2483 | 85500 | 0.0001 | - | - |
5.2790 | 86000 | 0.0001 | 0.8205 | 0.7835 |
5.3097 | 86500 | 0.0001 | - | - |
5.3404 | 87000 | 0.0001 | - | - |
5.3711 | 87500 | 0.0001 | - | - |
5.4018 | 88000 | 0.0001 | 0.8201 | 0.7840 |
5.4324 | 88500 | 0.0001 | - | - |
5.4631 | 89000 | 0.0001 | - | - |
5.4938 | 89500 | 0.0001 | - | - |
5.5245 | 90000 | 0.0001 | 0.8199 | 0.7830 |
5.5552 | 90500 | 0.0001 | - | - |
5.5859 | 91000 | 0.0001 | - | - |
5.6166 | 91500 | 0.0001 | - | - |
5.6473 | 92000 | 0.0001 | 0.8204 | 0.7830 |
5.6780 | 92500 | 0.0001 | - | - |
5.7087 | 93000 | 0.0001 | - | - |
5.7394 | 93500 | 0.0001 | - | - |
5.7701 | 94000 | 0.0001 | 0.8206 | 0.7832 |
5.8007 | 94500 | 0.0001 | - | - |
5.8314 | 95000 | 0.0001 | - | - |
5.8621 | 95500 | 0.0001 | - | - |
5.8928 | 96000 | 0.0001 | 0.8212 | 0.7833 |
5.9235 | 96500 | 0.0001 | - | - |
5.9542 | 97000 | 0.0001 | - | - |
5.9849 | 97500 | 0.0001 | - | - |
6.0156 | 98000 | 0.0001 | 0.8210 | 0.7839 |
6.0463 | 98500 | 0.0001 | - | - |
6.0770 | 99000 | 0.0001 | - | - |
6.1077 | 99500 | 0.0001 | - | - |
6.1384 | 100000 | 0.0001 | 0.8206 | 0.7850 |
6.1691 | 100500 | 0.0001 | - | - |
6.1997 | 101000 | 0.0001 | - | - |
6.2304 | 101500 | 0.0001 | - | - |
6.2611 | 102000 | 0.0001 | 0.8200 | 0.7839 |
6.2918 | 102500 | 0.0001 | - | - |
6.3225 | 103000 | 0.0001 | - | - |
6.3532 | 103500 | 0.0001 | - | - |
6.3839 | 104000 | 0.0001 | 0.8197 | 0.7827 |
6.4146 | 104500 | 0.0001 | - | - |
6.4453 | 105000 | 0.0001 | - | - |
6.4760 | 105500 | 0.0001 | - | - |
6.5067 | 106000 | 0.0001 | 0.8197 | 0.7837 |
6.5374 | 106500 | 0.0001 | - | - |
6.5680 | 107000 | 0.0001 | - | - |
6.5987 | 107500 | 0.0001 | - | - |
6.6294 | 108000 | 0.0001 | 0.8214 | 0.7837 |
6.6601 | 108500 | 0.0001 | - | - |
6.6908 | 109000 | 0.0001 | - | - |
6.7215 | 109500 | 0.0001 | - | - |
6.7522 | 110000 | 0.0001 | 0.8195 | 0.7823 |
6.7829 | 110500 | 0.0001 | - | - |
6.8136 | 111000 | 0.0001 | - | - |
6.8443 | 111500 | 0.0001 | - | - |
6.8750 | 112000 | 0.0001 | 0.8203 | 0.7836 |
6.9057 | 112500 | 0.0001 | - | - |
6.9363 | 113000 | 0.0001 | - | - |
6.9670 | 113500 | 0.0001 | - | - |
6.9977 | 114000 | 0.0001 | 0.8213 | 0.7832 |
7.0284 | 114500 | 0.0001 | - | - |
7.0591 | 115000 | 0.0001 | - | - |
7.0898 | 115500 | 0.0001 | - | - |
7.1205 | 116000 | 0.0001 | 0.8213 | 0.7844 |
7.1512 | 116500 | 0.0001 | - | - |
7.1819 | 117000 | 0.0001 | - | - |
7.2126 | 117500 | 0.0001 | - | - |
7.2433 | 118000 | 0.0001 | 0.8202 | 0.7831 |
7.2740 | 118500 | 0.0001 | - | - |
7.3046 | 119000 | 0.0001 | - | - |
7.3353 | 119500 | 0.0001 | - | - |
7.3660 | 120000 | 0.0001 | 0.8203 | 0.7837 |
7.3967 | 120500 | 0.0001 | - | - |
7.4274 | 121000 | 0.0001 | - | - |
7.4581 | 121500 | 0.0001 | - | - |
7.4888 | 122000 | 0.0001 | 0.8207 | 0.7833 |
7.5195 | 122500 | 0.0001 | - | - |
7.5502 | 123000 | 0.0001 | - | - |
7.5809 | 123500 | 0.0001 | - | - |
7.6116 | 124000 | 0.0001 | 0.8202 | 0.7835 |
7.6423 | 124500 | 0.0001 | - | - |
7.6729 | 125000 | 0.0001 | - | - |
7.7036 | 125500 | 0.0001 | - | - |
7.7343 | 126000 | 0.0001 | 0.8209 | 0.7832 |
7.7650 | 126500 | 0.0001 | - | - |
7.7957 | 127000 | 0.0001 | - | - |
7.8264 | 127500 | 0.0001 | - | - |
7.8571 | 128000 | 0.0001 | 0.8206 | 0.7837 |
7.8878 | 128500 | 0.0001 | - | - |
7.9185 | 129000 | 0.0001 | - | - |
7.9492 | 129500 | 0.0001 | - | - |
7.9799 | 130000 | 0.0001 | 0.8206 | 0.7833 |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.3.1
- Transformers: 4.51.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}