SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"Let's play carpenter.",
'うまく \u200b それ \u200b を \u200b 行なう \u200b こと \u200b に \u200b より \u200b 賞 \u200b を \u200b 与え \u200b られ \u200b た \u200b の \u200b で , 戦後 \u200b その \u200b こと \u200b に \u200b 対し \u200b て \u200b 耐え \u200b られ \u200b ない \u200b よう \u200b な \u200b 罪悪 \u200b 感 \u200b に \u200b さいなま \u200b れる \u200b こと \u200b は \u200b あり \u200b ませ \u200b ん \u200b でし \u200b た。',
'何も',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
STSbenchmark-en-test
andJSTS-validation
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | STSbenchmark-en-test | JSTS-validation |
---|---|---|
pearson_cosine | 0.8051 | 0.8342 |
spearman_cosine | 0.826 | 0.7855 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 36,481,525 training samples
- Columns:
english
andlabel
- Approximate statistics based on the first 1000 samples:
english label type string list details - min: 4 tokens
- mean: 19.62 tokens
- max: 128 tokens
- size: 384 elements
- Samples:
english label Vivian Campbell guitar
[0.08598259836435318, -0.000369173038052395, -0.030096791684627533, -0.084083192050457, 0.005113023333251476, ...]
現在リマ市内では、かなり簡単に日本食またはニッケイ料理を食べ、購入することができます。
[0.070896215736866, -0.029140323400497437, -0.04809350147843361, -0.06831265985965729, 0.09653418511152267, ...]
What is Azure ML Studio?
[0.045558128505945206, 0.018798239529132843, -0.07205377519130707, -0.0224569421261549, 0.004769254010170698, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 512gradient_accumulation_steps
: 2learning_rate
: 0.0003num_train_epochs
: 8warmup_ratio
: 0.15bf16
: Truedataloader_num_workers
: 8load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0003weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.15warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 8dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | STSbenchmark-en-test_spearman_cosine | JSTS-validation_spearman_cosine |
---|---|---|---|---|
0.0140 | 500 | 0.0058 | - | - |
0.0281 | 1000 | 0.0017 | - | - |
0.0421 | 1500 | 0.0015 | - | - |
0.0561 | 2000 | 0.0013 | 0.1233 | 0.2150 |
0.0702 | 2500 | 0.0013 | - | - |
0.0842 | 3000 | 0.0012 | - | - |
0.0982 | 3500 | 0.0012 | - | - |
0.1123 | 4000 | 0.0011 | 0.1888 | 0.2390 |
0.1263 | 4500 | 0.0011 | - | - |
0.1403 | 5000 | 0.0011 | - | - |
0.1544 | 5500 | 0.001 | - | - |
0.1684 | 6000 | 0.001 | 0.2701 | 0.3540 |
0.1824 | 6500 | 0.0009 | - | - |
0.1965 | 7000 | 0.0009 | - | - |
0.2105 | 7500 | 0.0009 | - | - |
0.2246 | 8000 | 0.0009 | 0.3959 | 0.4606 |
0.2386 | 8500 | 0.0008 | - | - |
0.2526 | 9000 | 0.0008 | - | - |
0.2667 | 9500 | 0.0008 | - | - |
0.2807 | 10000 | 0.0008 | 0.4659 | 0.5495 |
0.2947 | 10500 | 0.0007 | - | - |
0.3088 | 11000 | 0.0007 | - | - |
0.3228 | 11500 | 0.0007 | - | - |
0.3368 | 12000 | 0.0007 | 0.5446 | 0.6184 |
0.3509 | 12500 | 0.0006 | - | - |
0.3649 | 13000 | 0.0006 | - | - |
0.3789 | 13500 | 0.0006 | - | - |
0.3930 | 14000 | 0.0006 | 0.6056 | 0.6671 |
0.4070 | 14500 | 0.0006 | - | - |
0.4210 | 15000 | 0.0006 | - | - |
0.4351 | 15500 | 0.0006 | - | - |
0.4491 | 16000 | 0.0005 | 0.6551 | 0.7015 |
0.4631 | 16500 | 0.0005 | - | - |
0.4772 | 17000 | 0.0005 | - | - |
0.4912 | 17500 | 0.0005 | - | - |
0.5052 | 18000 | 0.0005 | 0.6897 | 0.7231 |
0.5193 | 18500 | 0.0005 | - | - |
0.5333 | 19000 | 0.0005 | - | - |
0.5473 | 19500 | 0.0005 | - | - |
0.5614 | 20000 | 0.0005 | 0.7138 | 0.7427 |
0.5754 | 20500 | 0.0004 | - | - |
0.5894 | 21000 | 0.0004 | - | - |
0.6035 | 21500 | 0.0004 | - | - |
0.6175 | 22000 | 0.0004 | 0.7319 | 0.7488 |
0.6316 | 22500 | 0.0004 | - | - |
0.6456 | 23000 | 0.0004 | - | - |
0.6596 | 23500 | 0.0004 | - | - |
0.6737 | 24000 | 0.0004 | 0.7421 | 0.7561 |
0.6877 | 24500 | 0.0004 | - | - |
0.7017 | 25000 | 0.0004 | - | - |
0.7158 | 25500 | 0.0004 | - | - |
0.7298 | 26000 | 0.0004 | 0.7607 | 0.7620 |
0.7438 | 26500 | 0.0004 | - | - |
0.7579 | 27000 | 0.0004 | - | - |
0.7719 | 27500 | 0.0004 | - | - |
0.7859 | 28000 | 0.0004 | 0.7751 | 0.7667 |
0.8000 | 28500 | 0.0004 | - | - |
0.8140 | 29000 | 0.0003 | - | - |
0.8280 | 29500 | 0.0003 | - | - |
0.8421 | 30000 | 0.0003 | 0.7838 | 0.7756 |
0.8561 | 30500 | 0.0003 | - | - |
0.8701 | 31000 | 0.0003 | - | - |
0.8842 | 31500 | 0.0003 | - | - |
0.8982 | 32000 | 0.0003 | 0.7962 | 0.7796 |
0.9122 | 32500 | 0.0003 | - | - |
0.9263 | 33000 | 0.0003 | - | - |
0.9403 | 33500 | 0.0003 | - | - |
0.9543 | 34000 | 0.0003 | 0.8017 | 0.7793 |
0.9684 | 34500 | 0.0003 | - | - |
0.9824 | 35000 | 0.0003 | - | - |
0.9964 | 35500 | 0.0003 | - | - |
1.0105 | 36000 | 0.0003 | 0.8064 | 0.7813 |
1.0245 | 36500 | 0.0003 | - | - |
1.0385 | 37000 | 0.0003 | - | - |
1.0526 | 37500 | 0.0003 | - | - |
1.0666 | 38000 | 0.0003 | 0.8071 | 0.7816 |
1.0806 | 38500 | 0.0003 | - | - |
1.0947 | 39000 | 0.0003 | - | - |
1.1087 | 39500 | 0.0003 | - | - |
1.1227 | 40000 | 0.0003 | 0.8103 | 0.7794 |
1.1368 | 40500 | 0.0003 | - | - |
1.1508 | 41000 | 0.0003 | - | - |
1.1648 | 41500 | 0.0002 | - | - |
1.1789 | 42000 | 0.0002 | 0.8101 | 0.7812 |
1.1929 | 42500 | 0.0002 | - | - |
1.2070 | 43000 | 0.0002 | - | - |
1.2210 | 43500 | 0.0002 | - | - |
1.2350 | 44000 | 0.0002 | 0.8143 | 0.7805 |
1.2491 | 44500 | 0.0002 | - | - |
1.2631 | 45000 | 0.0002 | - | - |
1.2771 | 45500 | 0.0002 | - | - |
1.2912 | 46000 | 0.0002 | 0.8119 | 0.7809 |
1.3052 | 46500 | 0.0002 | - | - |
1.3192 | 47000 | 0.0002 | - | - |
1.3333 | 47500 | 0.0002 | - | - |
1.3473 | 48000 | 0.0002 | 0.8144 | 0.7824 |
1.3613 | 48500 | 0.0002 | - | - |
1.3754 | 49000 | 0.0002 | - | - |
1.3894 | 49500 | 0.0002 | - | - |
1.4034 | 50000 | 0.0002 | 0.8155 | 0.7811 |
1.4175 | 50500 | 0.0002 | - | - |
1.4315 | 51000 | 0.0002 | - | - |
1.4455 | 51500 | 0.0002 | - | - |
1.4596 | 52000 | 0.0002 | 0.8152 | 0.7822 |
1.4736 | 52500 | 0.0002 | - | - |
1.4876 | 53000 | 0.0002 | - | - |
1.5017 | 53500 | 0.0002 | - | - |
1.5157 | 54000 | 0.0002 | 0.8182 | 0.7827 |
1.5297 | 54500 | 0.0002 | - | - |
1.5438 | 55000 | 0.0002 | - | - |
1.5578 | 55500 | 0.0002 | - | - |
1.5718 | 56000 | 0.0002 | 0.8189 | 0.7818 |
1.5859 | 56500 | 0.0002 | - | - |
1.5999 | 57000 | 0.0002 | - | - |
1.6140 | 57500 | 0.0002 | - | - |
1.6280 | 58000 | 0.0002 | 0.8185 | 0.7845 |
1.6420 | 58500 | 0.0002 | - | - |
1.6561 | 59000 | 0.0002 | - | - |
1.6701 | 59500 | 0.0002 | - | - |
1.6841 | 60000 | 0.0002 | 0.8171 | 0.7856 |
1.6982 | 60500 | 0.0002 | - | - |
1.7122 | 61000 | 0.0002 | - | - |
1.7262 | 61500 | 0.0002 | - | - |
1.7403 | 62000 | 0.0002 | 0.8200 | 0.7830 |
1.7543 | 62500 | 0.0002 | - | - |
1.7683 | 63000 | 0.0002 | - | - |
1.7824 | 63500 | 0.0002 | - | - |
1.7964 | 64000 | 0.0002 | 0.8191 | 0.7847 |
1.8104 | 64500 | 0.0002 | - | - |
1.8245 | 65000 | 0.0002 | - | - |
1.8385 | 65500 | 0.0002 | - | - |
1.8525 | 66000 | 0.0002 | 0.8213 | 0.7836 |
1.8666 | 66500 | 0.0002 | - | - |
1.8806 | 67000 | 0.0002 | - | - |
1.8946 | 67500 | 0.0002 | - | - |
1.9087 | 68000 | 0.0002 | 0.8214 | 0.7816 |
1.9227 | 68500 | 0.0002 | - | - |
1.9367 | 69000 | 0.0002 | - | - |
1.9508 | 69500 | 0.0002 | - | - |
1.9648 | 70000 | 0.0002 | 0.8225 | 0.7831 |
1.9789 | 70500 | 0.0002 | - | - |
1.9929 | 71000 | 0.0002 | - | - |
2.0069 | 71500 | 0.0002 | - | - |
2.0209 | 72000 | 0.0002 | 0.8213 | 0.7829 |
2.0350 | 72500 | 0.0002 | - | - |
2.0490 | 73000 | 0.0002 | - | - |
2.0630 | 73500 | 0.0002 | - | - |
2.0771 | 74000 | 0.0002 | 0.8213 | 0.7844 |
2.0911 | 74500 | 0.0002 | - | - |
2.1051 | 75000 | 0.0002 | - | - |
2.1192 | 75500 | 0.0002 | - | - |
2.1332 | 76000 | 0.0002 | 0.8241 | 0.7832 |
2.1472 | 76500 | 0.0002 | - | - |
2.1613 | 77000 | 0.0002 | - | - |
2.1753 | 77500 | 0.0002 | - | - |
2.1894 | 78000 | 0.0002 | 0.8248 | 0.7833 |
2.2034 | 78500 | 0.0002 | - | - |
2.2174 | 79000 | 0.0002 | - | - |
2.2315 | 79500 | 0.0002 | - | - |
2.2455 | 80000 | 0.0002 | 0.8239 | 0.7849 |
2.2595 | 80500 | 0.0002 | - | - |
2.2736 | 81000 | 0.0002 | - | - |
2.2876 | 81500 | 0.0002 | - | - |
2.3016 | 82000 | 0.0002 | 0.8233 | 0.7858 |
2.3157 | 82500 | 0.0002 | - | - |
2.3297 | 83000 | 0.0002 | - | - |
2.3437 | 83500 | 0.0002 | - | - |
2.3578 | 84000 | 0.0002 | 0.8216 | 0.7846 |
2.3718 | 84500 | 0.0002 | - | - |
2.3858 | 85000 | 0.0002 | - | - |
2.3999 | 85500 | 0.0002 | - | - |
2.4139 | 86000 | 0.0002 | 0.8231 | 0.7844 |
2.4279 | 86500 | 0.0002 | - | - |
2.4420 | 87000 | 0.0002 | - | - |
2.4560 | 87500 | 0.0002 | - | - |
2.4700 | 88000 | 0.0002 | 0.8226 | 0.7828 |
2.4841 | 88500 | 0.0002 | - | - |
2.4981 | 89000 | 0.0002 | - | - |
2.5121 | 89500 | 0.0002 | - | - |
2.5262 | 90000 | 0.0002 | 0.8245 | 0.7829 |
2.5402 | 90500 | 0.0002 | - | - |
2.5543 | 91000 | 0.0002 | - | - |
2.5683 | 91500 | 0.0002 | - | - |
2.5823 | 92000 | 0.0002 | 0.8230 | 0.7848 |
2.5964 | 92500 | 0.0002 | - | - |
2.6104 | 93000 | 0.0002 | - | - |
2.6244 | 93500 | 0.0002 | - | - |
2.6385 | 94000 | 0.0002 | 0.8222 | 0.7836 |
2.6525 | 94500 | 0.0002 | - | - |
2.6665 | 95000 | 0.0002 | - | - |
2.6806 | 95500 | 0.0002 | - | - |
2.6946 | 96000 | 0.0002 | 0.8242 | 0.7850 |
2.7086 | 96500 | 0.0002 | - | - |
2.7227 | 97000 | 0.0002 | - | - |
2.7367 | 97500 | 0.0002 | - | - |
2.7507 | 98000 | 0.0002 | 0.8235 | 0.7846 |
2.7648 | 98500 | 0.0002 | - | - |
2.7788 | 99000 | 0.0002 | - | - |
2.7928 | 99500 | 0.0002 | - | - |
2.8069 | 100000 | 0.0002 | 0.8226 | 0.7852 |
2.8209 | 100500 | 0.0002 | - | - |
2.8349 | 101000 | 0.0002 | - | - |
2.8490 | 101500 | 0.0002 | - | - |
2.8630 | 102000 | 0.0002 | 0.8243 | 0.7838 |
2.8770 | 102500 | 0.0002 | - | - |
2.8911 | 103000 | 0.0002 | - | - |
2.9051 | 103500 | 0.0002 | - | - |
2.9191 | 104000 | 0.0002 | 0.8228 | 0.7851 |
2.9332 | 104500 | 0.0002 | - | - |
2.9472 | 105000 | 0.0002 | - | - |
2.9613 | 105500 | 0.0002 | - | - |
2.9753 | 106000 | 0.0002 | 0.8266 | 0.7837 |
2.9893 | 106500 | 0.0002 | - | - |
3.0033 | 107000 | 0.0002 | - | - |
3.0174 | 107500 | 0.0002 | - | - |
3.0314 | 108000 | 0.0002 | 0.8258 | 0.7834 |
3.0454 | 108500 | 0.0002 | - | - |
3.0595 | 109000 | 0.0002 | - | - |
3.0735 | 109500 | 0.0002 | - | - |
3.0875 | 110000 | 0.0002 | 0.8245 | 0.7848 |
3.1016 | 110500 | 0.0002 | - | - |
3.1156 | 111000 | 0.0002 | - | - |
3.1297 | 111500 | 0.0002 | - | - |
3.1437 | 112000 | 0.0002 | 0.8250 | 0.7842 |
3.1577 | 112500 | 0.0002 | - | - |
3.1718 | 113000 | 0.0002 | - | - |
3.1858 | 113500 | 0.0002 | - | - |
3.1998 | 114000 | 0.0002 | 0.8228 | 0.7834 |
3.2139 | 114500 | 0.0002 | - | - |
3.2279 | 115000 | 0.0002 | - | - |
3.2419 | 115500 | 0.0002 | - | - |
3.2560 | 116000 | 0.0002 | 0.8265 | 0.7853 |
3.2700 | 116500 | 0.0002 | - | - |
3.2840 | 117000 | 0.0002 | - | - |
3.2981 | 117500 | 0.0002 | - | - |
3.3121 | 118000 | 0.0002 | 0.8246 | 0.7852 |
3.3261 | 118500 | 0.0002 | - | - |
3.3402 | 119000 | 0.0002 | - | - |
3.3542 | 119500 | 0.0002 | - | - |
3.3682 | 120000 | 0.0002 | 0.8278 | 0.7840 |
3.3823 | 120500 | 0.0002 | - | - |
3.3963 | 121000 | 0.0002 | - | - |
3.4103 | 121500 | 0.0002 | - | - |
3.4244 | 122000 | 0.0002 | 0.8258 | 0.7839 |
3.4384 | 122500 | 0.0002 | - | - |
3.4524 | 123000 | 0.0002 | - | - |
3.4665 | 123500 | 0.0002 | - | - |
3.4805 | 124000 | 0.0002 | 0.8258 | 0.7840 |
3.4945 | 124500 | 0.0002 | - | - |
3.5086 | 125000 | 0.0002 | - | - |
3.5226 | 125500 | 0.0002 | - | - |
3.5367 | 126000 | 0.0002 | 0.8247 | 0.7829 |
3.5507 | 126500 | 0.0002 | - | - |
3.5647 | 127000 | 0.0002 | - | - |
3.5788 | 127500 | 0.0002 | - | - |
3.5928 | 128000 | 0.0002 | 0.8240 | 0.7849 |
3.6068 | 128500 | 0.0002 | - | - |
3.6209 | 129000 | 0.0002 | - | - |
3.6349 | 129500 | 0.0002 | - | - |
3.6489 | 130000 | 0.0002 | 0.8266 | 0.7843 |
3.6630 | 130500 | 0.0002 | - | - |
3.6770 | 131000 | 0.0002 | - | - |
3.6910 | 131500 | 0.0002 | - | - |
3.7051 | 132000 | 0.0002 | 0.8246 | 0.7837 |
3.7191 | 132500 | 0.0002 | - | - |
3.7331 | 133000 | 0.0002 | - | - |
3.7472 | 133500 | 0.0002 | - | - |
3.7612 | 134000 | 0.0002 | 0.8249 | 0.7840 |
3.7752 | 134500 | 0.0002 | - | - |
3.7893 | 135000 | 0.0002 | - | - |
3.8033 | 135500 | 0.0002 | - | - |
3.8173 | 136000 | 0.0002 | 0.8253 | 0.7838 |
3.8314 | 136500 | 0.0002 | - | - |
3.8454 | 137000 | 0.0002 | - | - |
3.8594 | 137500 | 0.0002 | - | - |
3.8735 | 138000 | 0.0002 | 0.8261 | 0.7840 |
3.8875 | 138500 | 0.0002 | - | - |
3.9015 | 139000 | 0.0002 | - | - |
3.9156 | 139500 | 0.0002 | - | - |
3.9296 | 140000 | 0.0002 | 0.8255 | 0.7848 |
3.9437 | 140500 | 0.0002 | - | - |
3.9577 | 141000 | 0.0002 | - | - |
3.9717 | 141500 | 0.0002 | - | - |
3.9858 | 142000 | 0.0002 | 0.8255 | 0.7857 |
3.9998 | 142500 | 0.0002 | - | - |
4.0138 | 143000 | 0.0002 | - | - |
4.0278 | 143500 | 0.0002 | - | - |
4.0419 | 144000 | 0.0002 | 0.8266 | 0.7854 |
4.0559 | 144500 | 0.0002 | - | - |
4.0699 | 145000 | 0.0002 | - | - |
4.0840 | 145500 | 0.0002 | - | - |
4.0980 | 146000 | 0.0002 | 0.8260 | 0.7844 |
4.1121 | 146500 | 0.0002 | - | - |
4.1261 | 147000 | 0.0002 | - | - |
4.1401 | 147500 | 0.0002 | - | - |
4.1542 | 148000 | 0.0002 | 0.8249 | 0.7840 |
4.1682 | 148500 | 0.0002 | - | - |
4.1822 | 149000 | 0.0002 | - | - |
4.1963 | 149500 | 0.0002 | - | - |
4.2103 | 150000 | 0.0002 | 0.8262 | 0.7845 |
4.2243 | 150500 | 0.0002 | - | - |
4.2384 | 151000 | 0.0002 | - | - |
4.2524 | 151500 | 0.0002 | - | - |
4.2664 | 152000 | 0.0002 | 0.8278 | 0.7849 |
4.2805 | 152500 | 0.0002 | - | - |
4.2945 | 153000 | 0.0002 | - | - |
4.3085 | 153500 | 0.0002 | - | - |
4.3226 | 154000 | 0.0002 | 0.8262 | 0.7848 |
4.3366 | 154500 | 0.0002 | - | - |
4.3506 | 155000 | 0.0002 | - | - |
4.3647 | 155500 | 0.0002 | - | - |
4.3787 | 156000 | 0.0002 | 0.8262 | 0.7851 |
4.3927 | 156500 | 0.0002 | - | - |
4.4068 | 157000 | 0.0002 | - | - |
4.4208 | 157500 | 0.0002 | - | - |
4.4348 | 158000 | 0.0002 | 0.8256 | 0.7846 |
4.4489 | 158500 | 0.0002 | - | - |
4.4629 | 159000 | 0.0002 | - | - |
4.4769 | 159500 | 0.0002 | - | - |
4.4910 | 160000 | 0.0002 | 0.8269 | 0.7838 |
4.5050 | 160500 | 0.0002 | - | - |
4.5191 | 161000 | 0.0002 | - | - |
4.5331 | 161500 | 0.0002 | - | - |
4.5471 | 162000 | 0.0002 | 0.8261 | 0.7848 |
4.5612 | 162500 | 0.0002 | - | - |
4.5752 | 163000 | 0.0002 | - | - |
4.5892 | 163500 | 0.0002 | - | - |
4.6033 | 164000 | 0.0002 | 0.8261 | 0.7849 |
4.6173 | 164500 | 0.0002 | - | - |
4.6313 | 165000 | 0.0002 | - | - |
4.6454 | 165500 | 0.0002 | - | - |
4.6594 | 166000 | 0.0002 | 0.8267 | 0.7838 |
4.6734 | 166500 | 0.0002 | - | - |
4.6875 | 167000 | 0.0002 | - | - |
4.7015 | 167500 | 0.0002 | - | - |
4.7155 | 168000 | 0.0002 | 0.8271 | 0.7848 |
4.7296 | 168500 | 0.0002 | - | - |
4.7436 | 169000 | 0.0002 | - | - |
4.7576 | 169500 | 0.0002 | - | - |
4.7717 | 170000 | 0.0002 | 0.8260 | 0.7853 |
4.7857 | 170500 | 0.0002 | - | - |
4.7997 | 171000 | 0.0002 | - | - |
4.8138 | 171500 | 0.0002 | - | - |
4.8278 | 172000 | 0.0002 | 0.8275 | 0.7852 |
4.8418 | 172500 | 0.0002 | - | - |
4.8559 | 173000 | 0.0002 | - | - |
4.8699 | 173500 | 0.0002 | - | - |
4.8839 | 174000 | 0.0002 | 0.8264 | 0.7863 |
4.8980 | 174500 | 0.0002 | - | - |
4.9120 | 175000 | 0.0002 | - | - |
4.9261 | 175500 | 0.0002 | - | - |
4.9401 | 176000 | 0.0002 | 0.8247 | 0.7847 |
4.9541 | 176500 | 0.0002 | - | - |
4.9682 | 177000 | 0.0002 | - | - |
4.9822 | 177500 | 0.0002 | - | - |
4.9962 | 178000 | 0.0002 | 0.8253 | 0.7850 |
5.0102 | 178500 | 0.0002 | - | - |
5.0243 | 179000 | 0.0002 | - | - |
5.0383 | 179500 | 0.0002 | - | - |
5.0523 | 180000 | 0.0002 | 0.8250 | 0.7840 |
5.0664 | 180500 | 0.0002 | - | - |
5.0804 | 181000 | 0.0002 | - | - |
5.0945 | 181500 | 0.0002 | - | - |
5.1085 | 182000 | 0.0002 | 0.8274 | 0.7844 |
5.1225 | 182500 | 0.0002 | - | - |
5.1366 | 183000 | 0.0002 | - | - |
5.1506 | 183500 | 0.0002 | - | - |
5.1646 | 184000 | 0.0002 | 0.8267 | 0.7843 |
5.1787 | 184500 | 0.0002 | - | - |
5.1927 | 185000 | 0.0002 | - | - |
5.2067 | 185500 | 0.0002 | - | - |
5.2208 | 186000 | 0.0002 | 0.8271 | 0.7856 |
5.2348 | 186500 | 0.0002 | - | - |
5.2488 | 187000 | 0.0002 | - | - |
5.2629 | 187500 | 0.0002 | - | - |
5.2769 | 188000 | 0.0002 | 0.8246 | 0.7845 |
5.2909 | 188500 | 0.0002 | - | - |
5.3050 | 189000 | 0.0002 | - | - |
5.3190 | 189500 | 0.0002 | - | - |
5.3330 | 190000 | 0.0002 | 0.8266 | 0.7863 |
5.3471 | 190500 | 0.0002 | - | - |
5.3611 | 191000 | 0.0001 | - | - |
5.3751 | 191500 | 0.0001 | - | - |
5.3892 | 192000 | 0.0001 | 0.8262 | 0.7845 |
5.4032 | 192500 | 0.0002 | - | - |
5.4172 | 193000 | 0.0001 | - | - |
5.4313 | 193500 | 0.0001 | - | - |
5.4453 | 194000 | 0.0001 | 0.8261 | 0.7858 |
5.4593 | 194500 | 0.0001 | - | - |
5.4734 | 195000 | 0.0001 | - | - |
5.4874 | 195500 | 0.0001 | - | - |
5.5015 | 196000 | 0.0001 | 0.8266 | 0.7840 |
5.5155 | 196500 | 0.0001 | - | - |
5.5295 | 197000 | 0.0001 | - | - |
5.5436 | 197500 | 0.0001 | - | - |
5.5576 | 198000 | 0.0001 | 0.8257 | 0.7844 |
5.5716 | 198500 | 0.0001 | - | - |
5.5857 | 199000 | 0.0001 | - | - |
5.5997 | 199500 | 0.0001 | - | - |
5.6137 | 200000 | 0.0001 | 0.8265 | 0.7844 |
5.6278 | 200500 | 0.0001 | - | - |
5.6418 | 201000 | 0.0001 | - | - |
5.6558 | 201500 | 0.0001 | - | - |
5.6699 | 202000 | 0.0001 | 0.8263 | 0.7856 |
5.6839 | 202500 | 0.0001 | - | - |
5.6979 | 203000 | 0.0001 | - | - |
5.7120 | 203500 | 0.0001 | - | - |
5.7260 | 204000 | 0.0001 | 0.8248 | 0.7857 |
5.7400 | 204500 | 0.0001 | - | - |
5.7541 | 205000 | 0.0001 | - | - |
5.7681 | 205500 | 0.0001 | - | - |
5.7821 | 206000 | 0.0001 | 0.8252 | 0.7851 |
5.7962 | 206500 | 0.0001 | - | - |
5.8102 | 207000 | 0.0001 | - | - |
5.8242 | 207500 | 0.0001 | - | - |
5.8383 | 208000 | 0.0001 | 0.8261 | 0.7853 |
5.8523 | 208500 | 0.0001 | - | - |
5.8663 | 209000 | 0.0001 | - | - |
5.8804 | 209500 | 0.0001 | - | - |
5.8944 | 210000 | 0.0001 | 0.8272 | 0.7850 |
5.9085 | 210500 | 0.0001 | - | - |
5.9225 | 211000 | 0.0001 | - | - |
5.9365 | 211500 | 0.0001 | - | - |
5.9506 | 212000 | 0.0001 | 0.8259 | 0.7849 |
5.9646 | 212500 | 0.0001 | - | - |
5.9786 | 213000 | 0.0001 | - | - |
5.9927 | 213500 | 0.0001 | - | - |
6.0067 | 214000 | 0.0001 | 0.8253 | 0.7848 |
6.0207 | 214500 | 0.0001 | - | - |
6.0347 | 215000 | 0.0001 | - | - |
6.0488 | 215500 | 0.0001 | - | - |
6.0628 | 216000 | 0.0001 | 0.8259 | 0.7855 |
6.0769 | 216500 | 0.0001 | - | - |
6.0909 | 217000 | 0.0001 | - | - |
6.1049 | 217500 | 0.0001 | - | - |
6.1190 | 218000 | 0.0001 | 0.8267 | 0.7852 |
6.1330 | 218500 | 0.0001 | - | - |
6.1470 | 219000 | 0.0001 | - | - |
6.1611 | 219500 | 0.0001 | - | - |
6.1751 | 220000 | 0.0001 | 0.8260 | 0.7850 |
6.1891 | 220500 | 0.0001 | - | - |
6.2032 | 221000 | 0.0001 | - | - |
6.2172 | 221500 | 0.0001 | - | - |
6.2312 | 222000 | 0.0001 | 0.8258 | 0.7854 |
6.2453 | 222500 | 0.0001 | - | - |
6.2593 | 223000 | 0.0001 | - | - |
6.2733 | 223500 | 0.0001 | - | - |
6.2874 | 224000 | 0.0001 | 0.8261 | 0.7847 |
6.3014 | 224500 | 0.0001 | - | - |
6.3154 | 225000 | 0.0001 | - | - |
6.3295 | 225500 | 0.0001 | - | - |
6.3435 | 226000 | 0.0001 | 0.8262 | 0.7858 |
6.3575 | 226500 | 0.0001 | - | - |
6.3716 | 227000 | 0.0001 | - | - |
6.3856 | 227500 | 0.0001 | - | - |
6.3996 | 228000 | 0.0001 | 0.8253 | 0.7852 |
6.4137 | 228500 | 0.0001 | - | - |
6.4277 | 229000 | 0.0001 | - | - |
6.4417 | 229500 | 0.0001 | - | - |
6.4558 | 230000 | 0.0001 | 0.8263 | 0.7850 |
6.4698 | 230500 | 0.0001 | - | - |
6.4839 | 231000 | 0.0001 | - | - |
6.4979 | 231500 | 0.0001 | - | - |
6.5119 | 232000 | 0.0001 | 0.8262 | 0.7850 |
6.5260 | 232500 | 0.0001 | - | - |
6.5400 | 233000 | 0.0001 | - | - |
6.5540 | 233500 | 0.0001 | - | - |
6.5681 | 234000 | 0.0001 | 0.8257 | 0.7859 |
6.5821 | 234500 | 0.0001 | - | - |
6.5961 | 235000 | 0.0001 | - | - |
6.6102 | 235500 | 0.0001 | - | - |
6.6242 | 236000 | 0.0001 | 0.8260 | 0.7854 |
6.6382 | 236500 | 0.0001 | - | - |
6.6523 | 237000 | 0.0001 | - | - |
6.6663 | 237500 | 0.0001 | - | - |
6.6803 | 238000 | 0.0001 | 0.8267 | 0.7860 |
6.6944 | 238500 | 0.0001 | - | - |
6.7084 | 239000 | 0.0001 | - | - |
6.7224 | 239500 | 0.0001 | - | - |
6.7365 | 240000 | 0.0001 | 0.8252 | 0.7854 |
6.7505 | 240500 | 0.0001 | - | - |
6.7645 | 241000 | 0.0001 | - | - |
6.7786 | 241500 | 0.0001 | - | - |
6.7926 | 242000 | 0.0001 | 0.8256 | 0.7849 |
6.8066 | 242500 | 0.0001 | - | - |
6.8207 | 243000 | 0.0001 | - | - |
6.8347 | 243500 | 0.0001 | - | - |
6.8488 | 244000 | 0.0001 | 0.8257 | 0.7863 |
6.8628 | 244500 | 0.0001 | - | - |
6.8768 | 245000 | 0.0001 | - | - |
6.8909 | 245500 | 0.0001 | - | - |
6.9049 | 246000 | 0.0001 | 0.8253 | 0.7857 |
6.9189 | 246500 | 0.0001 | - | - |
6.9330 | 247000 | 0.0001 | - | - |
6.9470 | 247500 | 0.0001 | - | - |
6.9610 | 248000 | 0.0001 | 0.8264 | 0.7855 |
6.9751 | 248500 | 0.0001 | - | - |
6.9891 | 249000 | 0.0001 | - | - |
7.0031 | 249500 | 0.0001 | - | - |
7.0172 | 250000 | 0.0001 | 0.8252 | 0.7854 |
7.0312 | 250500 | 0.0001 | - | - |
7.0452 | 251000 | 0.0001 | - | - |
7.0593 | 251500 | 0.0001 | - | - |
7.0733 | 252000 | 0.0001 | 0.8264 | 0.7849 |
7.0873 | 252500 | 0.0001 | - | - |
7.1014 | 253000 | 0.0001 | - | - |
7.1154 | 253500 | 0.0001 | - | - |
7.1294 | 254000 | 0.0001 | 0.8263 | 0.7860 |
7.1435 | 254500 | 0.0001 | - | - |
7.1575 | 255000 | 0.0001 | - | - |
7.1715 | 255500 | 0.0001 | - | - |
7.1856 | 256000 | 0.0001 | 0.8257 | 0.7850 |
7.1996 | 256500 | 0.0001 | - | - |
7.2136 | 257000 | 0.0001 | - | - |
7.2277 | 257500 | 0.0001 | - | - |
7.2417 | 258000 | 0.0001 | 0.8254 | 0.7854 |
7.2557 | 258500 | 0.0001 | - | - |
7.2698 | 259000 | 0.0001 | - | - |
7.2838 | 259500 | 0.0001 | - | - |
7.2978 | 260000 | 0.0001 | 0.8261 | 0.7860 |
7.3119 | 260500 | 0.0001 | - | - |
7.3259 | 261000 | 0.0001 | - | - |
7.3399 | 261500 | 0.0001 | - | - |
7.3540 | 262000 | 0.0001 | 0.8257 | 0.7851 |
7.3680 | 262500 | 0.0001 | - | - |
7.3820 | 263000 | 0.0001 | - | - |
7.3961 | 263500 | 0.0001 | - | - |
7.4101 | 264000 | 0.0001 | 0.8256 | 0.7853 |
7.4242 | 264500 | 0.0001 | - | - |
7.4382 | 265000 | 0.0001 | - | - |
7.4522 | 265500 | 0.0001 | - | - |
7.4663 | 266000 | 0.0001 | 0.8254 | 0.7852 |
7.4803 | 266500 | 0.0001 | - | - |
7.4943 | 267000 | 0.0001 | - | - |
7.5084 | 267500 | 0.0001 | - | - |
7.5224 | 268000 | 0.0001 | 0.8261 | 0.7851 |
7.5364 | 268500 | 0.0001 | - | - |
7.5505 | 269000 | 0.0001 | - | - |
7.5645 | 269500 | 0.0001 | - | - |
7.5785 | 270000 | 0.0001 | 0.8251 | 0.7853 |
7.5926 | 270500 | 0.0001 | - | - |
7.6066 | 271000 | 0.0001 | - | - |
7.6206 | 271500 | 0.0001 | - | - |
7.6347 | 272000 | 0.0001 | 0.8255 | 0.7852 |
7.6487 | 272500 | 0.0001 | - | - |
7.6627 | 273000 | 0.0001 | - | - |
7.6768 | 273500 | 0.0001 | - | - |
7.6908 | 274000 | 0.0001 | 0.8259 | 0.7856 |
7.7048 | 274500 | 0.0001 | - | - |
7.7189 | 275000 | 0.0001 | - | - |
7.7329 | 275500 | 0.0001 | - | - |
7.7469 | 276000 | 0.0001 | 0.8257 | 0.7858 |
7.7610 | 276500 | 0.0001 | - | - |
7.7750 | 277000 | 0.0001 | - | - |
7.7890 | 277500 | 0.0001 | - | - |
7.8031 | 278000 | 0.0001 | 0.8255 | 0.7854 |
7.8171 | 278500 | 0.0001 | - | - |
7.8312 | 279000 | 0.0001 | - | - |
7.8452 | 279500 | 0.0001 | - | - |
7.8592 | 280000 | 0.0001 | 0.8259 | 0.7856 |
7.8733 | 280500 | 0.0001 | - | - |
7.8873 | 281000 | 0.0001 | - | - |
7.9013 | 281500 | 0.0001 | - | - |
7.9154 | 282000 | 0.0001 | 0.8258 | 0.7857 |
7.9294 | 282500 | 0.0001 | - | - |
7.9434 | 283000 | 0.0001 | - | - |
7.9575 | 283500 | 0.0001 | - | - |
7.9715 | 284000 | 0.0001 | 0.8260 | 0.7855 |
7.9855 | 284500 | 0.0001 | - | - |
7.9996 | 285000 | 0.0001 | - | - |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.3.1
- Transformers: 4.51.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for jvanhoof/all-miniLM-L6-v2-mE5s-distilled-ja-en-64K-vocab-cls-36M-test
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosine on STSbenchmark en testself-reported0.805
- Spearman Cosine on STSbenchmark en testself-reported0.826
- Pearson Cosine on JSTS validationself-reported0.834
- Spearman Cosine on JSTS validationself-reported0.785