SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    "Let's play carpenter.",
    'うまく \u200b それ \u200b を \u200b 行なう \u200b こと \u200b に \u200b より \u200b 賞 \u200b を \u200b 与え \u200b られ \u200b た \u200b の \u200b で , 戦後 \u200b その \u200b こと \u200b に \u200b 対し \u200b て \u200b 耐え \u200b られ \u200b ない \u200b よう \u200b な \u200b 罪悪 \u200b 感 \u200b に \u200b さいなま \u200b れる \u200b こと \u200b は \u200b あり \u200b ませ \u200b ん \u200b でし \u200b た。',
    '何も',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric STSbenchmark-en-test JSTS-validation
pearson_cosine 0.8051 0.8342
spearman_cosine 0.826 0.7855

Training Details

Training Dataset

Unnamed Dataset

  • Size: 36,481,525 training samples
  • Columns: english and label
  • Approximate statistics based on the first 1000 samples:
    english label
    type string list
    details
    • min: 4 tokens
    • mean: 19.62 tokens
    • max: 128 tokens
    • size: 384 elements
  • Samples:
    english label
    Vivian Campbell guitar [0.08598259836435318, -0.000369173038052395, -0.030096791684627533, -0.084083192050457, 0.005113023333251476, ...]
    現在リマ市内では、かなり簡単に日本食またはニッケイ料理を食べ、購入することができます。 [0.070896215736866, -0.029140323400497437, -0.04809350147843361, -0.06831265985965729, 0.09653418511152267, ...]
    What is Azure ML Studio? [0.045558128505945206, 0.018798239529132843, -0.07205377519130707, -0.0224569421261549, 0.004769254010170698, ...]
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • gradient_accumulation_steps: 2
  • learning_rate: 0.0003
  • num_train_epochs: 8
  • warmup_ratio: 0.15
  • bf16: True
  • dataloader_num_workers: 8
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0003
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 8
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.15
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 8
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss STSbenchmark-en-test_spearman_cosine JSTS-validation_spearman_cosine
0.0140 500 0.0058 - -
0.0281 1000 0.0017 - -
0.0421 1500 0.0015 - -
0.0561 2000 0.0013 0.1233 0.2150
0.0702 2500 0.0013 - -
0.0842 3000 0.0012 - -
0.0982 3500 0.0012 - -
0.1123 4000 0.0011 0.1888 0.2390
0.1263 4500 0.0011 - -
0.1403 5000 0.0011 - -
0.1544 5500 0.001 - -
0.1684 6000 0.001 0.2701 0.3540
0.1824 6500 0.0009 - -
0.1965 7000 0.0009 - -
0.2105 7500 0.0009 - -
0.2246 8000 0.0009 0.3959 0.4606
0.2386 8500 0.0008 - -
0.2526 9000 0.0008 - -
0.2667 9500 0.0008 - -
0.2807 10000 0.0008 0.4659 0.5495
0.2947 10500 0.0007 - -
0.3088 11000 0.0007 - -
0.3228 11500 0.0007 - -
0.3368 12000 0.0007 0.5446 0.6184
0.3509 12500 0.0006 - -
0.3649 13000 0.0006 - -
0.3789 13500 0.0006 - -
0.3930 14000 0.0006 0.6056 0.6671
0.4070 14500 0.0006 - -
0.4210 15000 0.0006 - -
0.4351 15500 0.0006 - -
0.4491 16000 0.0005 0.6551 0.7015
0.4631 16500 0.0005 - -
0.4772 17000 0.0005 - -
0.4912 17500 0.0005 - -
0.5052 18000 0.0005 0.6897 0.7231
0.5193 18500 0.0005 - -
0.5333 19000 0.0005 - -
0.5473 19500 0.0005 - -
0.5614 20000 0.0005 0.7138 0.7427
0.5754 20500 0.0004 - -
0.5894 21000 0.0004 - -
0.6035 21500 0.0004 - -
0.6175 22000 0.0004 0.7319 0.7488
0.6316 22500 0.0004 - -
0.6456 23000 0.0004 - -
0.6596 23500 0.0004 - -
0.6737 24000 0.0004 0.7421 0.7561
0.6877 24500 0.0004 - -
0.7017 25000 0.0004 - -
0.7158 25500 0.0004 - -
0.7298 26000 0.0004 0.7607 0.7620
0.7438 26500 0.0004 - -
0.7579 27000 0.0004 - -
0.7719 27500 0.0004 - -
0.7859 28000 0.0004 0.7751 0.7667
0.8000 28500 0.0004 - -
0.8140 29000 0.0003 - -
0.8280 29500 0.0003 - -
0.8421 30000 0.0003 0.7838 0.7756
0.8561 30500 0.0003 - -
0.8701 31000 0.0003 - -
0.8842 31500 0.0003 - -
0.8982 32000 0.0003 0.7962 0.7796
0.9122 32500 0.0003 - -
0.9263 33000 0.0003 - -
0.9403 33500 0.0003 - -
0.9543 34000 0.0003 0.8017 0.7793
0.9684 34500 0.0003 - -
0.9824 35000 0.0003 - -
0.9964 35500 0.0003 - -
1.0105 36000 0.0003 0.8064 0.7813
1.0245 36500 0.0003 - -
1.0385 37000 0.0003 - -
1.0526 37500 0.0003 - -
1.0666 38000 0.0003 0.8071 0.7816
1.0806 38500 0.0003 - -
1.0947 39000 0.0003 - -
1.1087 39500 0.0003 - -
1.1227 40000 0.0003 0.8103 0.7794
1.1368 40500 0.0003 - -
1.1508 41000 0.0003 - -
1.1648 41500 0.0002 - -
1.1789 42000 0.0002 0.8101 0.7812
1.1929 42500 0.0002 - -
1.2070 43000 0.0002 - -
1.2210 43500 0.0002 - -
1.2350 44000 0.0002 0.8143 0.7805
1.2491 44500 0.0002 - -
1.2631 45000 0.0002 - -
1.2771 45500 0.0002 - -
1.2912 46000 0.0002 0.8119 0.7809
1.3052 46500 0.0002 - -
1.3192 47000 0.0002 - -
1.3333 47500 0.0002 - -
1.3473 48000 0.0002 0.8144 0.7824
1.3613 48500 0.0002 - -
1.3754 49000 0.0002 - -
1.3894 49500 0.0002 - -
1.4034 50000 0.0002 0.8155 0.7811
1.4175 50500 0.0002 - -
1.4315 51000 0.0002 - -
1.4455 51500 0.0002 - -
1.4596 52000 0.0002 0.8152 0.7822
1.4736 52500 0.0002 - -
1.4876 53000 0.0002 - -
1.5017 53500 0.0002 - -
1.5157 54000 0.0002 0.8182 0.7827
1.5297 54500 0.0002 - -
1.5438 55000 0.0002 - -
1.5578 55500 0.0002 - -
1.5718 56000 0.0002 0.8189 0.7818
1.5859 56500 0.0002 - -
1.5999 57000 0.0002 - -
1.6140 57500 0.0002 - -
1.6280 58000 0.0002 0.8185 0.7845
1.6420 58500 0.0002 - -
1.6561 59000 0.0002 - -
1.6701 59500 0.0002 - -
1.6841 60000 0.0002 0.8171 0.7856
1.6982 60500 0.0002 - -
1.7122 61000 0.0002 - -
1.7262 61500 0.0002 - -
1.7403 62000 0.0002 0.8200 0.7830
1.7543 62500 0.0002 - -
1.7683 63000 0.0002 - -
1.7824 63500 0.0002 - -
1.7964 64000 0.0002 0.8191 0.7847
1.8104 64500 0.0002 - -
1.8245 65000 0.0002 - -
1.8385 65500 0.0002 - -
1.8525 66000 0.0002 0.8213 0.7836
1.8666 66500 0.0002 - -
1.8806 67000 0.0002 - -
1.8946 67500 0.0002 - -
1.9087 68000 0.0002 0.8214 0.7816
1.9227 68500 0.0002 - -
1.9367 69000 0.0002 - -
1.9508 69500 0.0002 - -
1.9648 70000 0.0002 0.8225 0.7831
1.9789 70500 0.0002 - -
1.9929 71000 0.0002 - -
2.0069 71500 0.0002 - -
2.0209 72000 0.0002 0.8213 0.7829
2.0350 72500 0.0002 - -
2.0490 73000 0.0002 - -
2.0630 73500 0.0002 - -
2.0771 74000 0.0002 0.8213 0.7844
2.0911 74500 0.0002 - -
2.1051 75000 0.0002 - -
2.1192 75500 0.0002 - -
2.1332 76000 0.0002 0.8241 0.7832
2.1472 76500 0.0002 - -
2.1613 77000 0.0002 - -
2.1753 77500 0.0002 - -
2.1894 78000 0.0002 0.8248 0.7833
2.2034 78500 0.0002 - -
2.2174 79000 0.0002 - -
2.2315 79500 0.0002 - -
2.2455 80000 0.0002 0.8239 0.7849
2.2595 80500 0.0002 - -
2.2736 81000 0.0002 - -
2.2876 81500 0.0002 - -
2.3016 82000 0.0002 0.8233 0.7858
2.3157 82500 0.0002 - -
2.3297 83000 0.0002 - -
2.3437 83500 0.0002 - -
2.3578 84000 0.0002 0.8216 0.7846
2.3718 84500 0.0002 - -
2.3858 85000 0.0002 - -
2.3999 85500 0.0002 - -
2.4139 86000 0.0002 0.8231 0.7844
2.4279 86500 0.0002 - -
2.4420 87000 0.0002 - -
2.4560 87500 0.0002 - -
2.4700 88000 0.0002 0.8226 0.7828
2.4841 88500 0.0002 - -
2.4981 89000 0.0002 - -
2.5121 89500 0.0002 - -
2.5262 90000 0.0002 0.8245 0.7829
2.5402 90500 0.0002 - -
2.5543 91000 0.0002 - -
2.5683 91500 0.0002 - -
2.5823 92000 0.0002 0.8230 0.7848
2.5964 92500 0.0002 - -
2.6104 93000 0.0002 - -
2.6244 93500 0.0002 - -
2.6385 94000 0.0002 0.8222 0.7836
2.6525 94500 0.0002 - -
2.6665 95000 0.0002 - -
2.6806 95500 0.0002 - -
2.6946 96000 0.0002 0.8242 0.7850
2.7086 96500 0.0002 - -
2.7227 97000 0.0002 - -
2.7367 97500 0.0002 - -
2.7507 98000 0.0002 0.8235 0.7846
2.7648 98500 0.0002 - -
2.7788 99000 0.0002 - -
2.7928 99500 0.0002 - -
2.8069 100000 0.0002 0.8226 0.7852
2.8209 100500 0.0002 - -
2.8349 101000 0.0002 - -
2.8490 101500 0.0002 - -
2.8630 102000 0.0002 0.8243 0.7838
2.8770 102500 0.0002 - -
2.8911 103000 0.0002 - -
2.9051 103500 0.0002 - -
2.9191 104000 0.0002 0.8228 0.7851
2.9332 104500 0.0002 - -
2.9472 105000 0.0002 - -
2.9613 105500 0.0002 - -
2.9753 106000 0.0002 0.8266 0.7837
2.9893 106500 0.0002 - -
3.0033 107000 0.0002 - -
3.0174 107500 0.0002 - -
3.0314 108000 0.0002 0.8258 0.7834
3.0454 108500 0.0002 - -
3.0595 109000 0.0002 - -
3.0735 109500 0.0002 - -
3.0875 110000 0.0002 0.8245 0.7848
3.1016 110500 0.0002 - -
3.1156 111000 0.0002 - -
3.1297 111500 0.0002 - -
3.1437 112000 0.0002 0.8250 0.7842
3.1577 112500 0.0002 - -
3.1718 113000 0.0002 - -
3.1858 113500 0.0002 - -
3.1998 114000 0.0002 0.8228 0.7834
3.2139 114500 0.0002 - -
3.2279 115000 0.0002 - -
3.2419 115500 0.0002 - -
3.2560 116000 0.0002 0.8265 0.7853
3.2700 116500 0.0002 - -
3.2840 117000 0.0002 - -
3.2981 117500 0.0002 - -
3.3121 118000 0.0002 0.8246 0.7852
3.3261 118500 0.0002 - -
3.3402 119000 0.0002 - -
3.3542 119500 0.0002 - -
3.3682 120000 0.0002 0.8278 0.7840
3.3823 120500 0.0002 - -
3.3963 121000 0.0002 - -
3.4103 121500 0.0002 - -
3.4244 122000 0.0002 0.8258 0.7839
3.4384 122500 0.0002 - -
3.4524 123000 0.0002 - -
3.4665 123500 0.0002 - -
3.4805 124000 0.0002 0.8258 0.7840
3.4945 124500 0.0002 - -
3.5086 125000 0.0002 - -
3.5226 125500 0.0002 - -
3.5367 126000 0.0002 0.8247 0.7829
3.5507 126500 0.0002 - -
3.5647 127000 0.0002 - -
3.5788 127500 0.0002 - -
3.5928 128000 0.0002 0.8240 0.7849
3.6068 128500 0.0002 - -
3.6209 129000 0.0002 - -
3.6349 129500 0.0002 - -
3.6489 130000 0.0002 0.8266 0.7843
3.6630 130500 0.0002 - -
3.6770 131000 0.0002 - -
3.6910 131500 0.0002 - -
3.7051 132000 0.0002 0.8246 0.7837
3.7191 132500 0.0002 - -
3.7331 133000 0.0002 - -
3.7472 133500 0.0002 - -
3.7612 134000 0.0002 0.8249 0.7840
3.7752 134500 0.0002 - -
3.7893 135000 0.0002 - -
3.8033 135500 0.0002 - -
3.8173 136000 0.0002 0.8253 0.7838
3.8314 136500 0.0002 - -
3.8454 137000 0.0002 - -
3.8594 137500 0.0002 - -
3.8735 138000 0.0002 0.8261 0.7840
3.8875 138500 0.0002 - -
3.9015 139000 0.0002 - -
3.9156 139500 0.0002 - -
3.9296 140000 0.0002 0.8255 0.7848
3.9437 140500 0.0002 - -
3.9577 141000 0.0002 - -
3.9717 141500 0.0002 - -
3.9858 142000 0.0002 0.8255 0.7857
3.9998 142500 0.0002 - -
4.0138 143000 0.0002 - -
4.0278 143500 0.0002 - -
4.0419 144000 0.0002 0.8266 0.7854
4.0559 144500 0.0002 - -
4.0699 145000 0.0002 - -
4.0840 145500 0.0002 - -
4.0980 146000 0.0002 0.8260 0.7844
4.1121 146500 0.0002 - -
4.1261 147000 0.0002 - -
4.1401 147500 0.0002 - -
4.1542 148000 0.0002 0.8249 0.7840
4.1682 148500 0.0002 - -
4.1822 149000 0.0002 - -
4.1963 149500 0.0002 - -
4.2103 150000 0.0002 0.8262 0.7845
4.2243 150500 0.0002 - -
4.2384 151000 0.0002 - -
4.2524 151500 0.0002 - -
4.2664 152000 0.0002 0.8278 0.7849
4.2805 152500 0.0002 - -
4.2945 153000 0.0002 - -
4.3085 153500 0.0002 - -
4.3226 154000 0.0002 0.8262 0.7848
4.3366 154500 0.0002 - -
4.3506 155000 0.0002 - -
4.3647 155500 0.0002 - -
4.3787 156000 0.0002 0.8262 0.7851
4.3927 156500 0.0002 - -
4.4068 157000 0.0002 - -
4.4208 157500 0.0002 - -
4.4348 158000 0.0002 0.8256 0.7846
4.4489 158500 0.0002 - -
4.4629 159000 0.0002 - -
4.4769 159500 0.0002 - -
4.4910 160000 0.0002 0.8269 0.7838
4.5050 160500 0.0002 - -
4.5191 161000 0.0002 - -
4.5331 161500 0.0002 - -
4.5471 162000 0.0002 0.8261 0.7848
4.5612 162500 0.0002 - -
4.5752 163000 0.0002 - -
4.5892 163500 0.0002 - -
4.6033 164000 0.0002 0.8261 0.7849
4.6173 164500 0.0002 - -
4.6313 165000 0.0002 - -
4.6454 165500 0.0002 - -
4.6594 166000 0.0002 0.8267 0.7838
4.6734 166500 0.0002 - -
4.6875 167000 0.0002 - -
4.7015 167500 0.0002 - -
4.7155 168000 0.0002 0.8271 0.7848
4.7296 168500 0.0002 - -
4.7436 169000 0.0002 - -
4.7576 169500 0.0002 - -
4.7717 170000 0.0002 0.8260 0.7853
4.7857 170500 0.0002 - -
4.7997 171000 0.0002 - -
4.8138 171500 0.0002 - -
4.8278 172000 0.0002 0.8275 0.7852
4.8418 172500 0.0002 - -
4.8559 173000 0.0002 - -
4.8699 173500 0.0002 - -
4.8839 174000 0.0002 0.8264 0.7863
4.8980 174500 0.0002 - -
4.9120 175000 0.0002 - -
4.9261 175500 0.0002 - -
4.9401 176000 0.0002 0.8247 0.7847
4.9541 176500 0.0002 - -
4.9682 177000 0.0002 - -
4.9822 177500 0.0002 - -
4.9962 178000 0.0002 0.8253 0.7850
5.0102 178500 0.0002 - -
5.0243 179000 0.0002 - -
5.0383 179500 0.0002 - -
5.0523 180000 0.0002 0.8250 0.7840
5.0664 180500 0.0002 - -
5.0804 181000 0.0002 - -
5.0945 181500 0.0002 - -
5.1085 182000 0.0002 0.8274 0.7844
5.1225 182500 0.0002 - -
5.1366 183000 0.0002 - -
5.1506 183500 0.0002 - -
5.1646 184000 0.0002 0.8267 0.7843
5.1787 184500 0.0002 - -
5.1927 185000 0.0002 - -
5.2067 185500 0.0002 - -
5.2208 186000 0.0002 0.8271 0.7856
5.2348 186500 0.0002 - -
5.2488 187000 0.0002 - -
5.2629 187500 0.0002 - -
5.2769 188000 0.0002 0.8246 0.7845
5.2909 188500 0.0002 - -
5.3050 189000 0.0002 - -
5.3190 189500 0.0002 - -
5.3330 190000 0.0002 0.8266 0.7863
5.3471 190500 0.0002 - -
5.3611 191000 0.0001 - -
5.3751 191500 0.0001 - -
5.3892 192000 0.0001 0.8262 0.7845
5.4032 192500 0.0002 - -
5.4172 193000 0.0001 - -
5.4313 193500 0.0001 - -
5.4453 194000 0.0001 0.8261 0.7858
5.4593 194500 0.0001 - -
5.4734 195000 0.0001 - -
5.4874 195500 0.0001 - -
5.5015 196000 0.0001 0.8266 0.7840
5.5155 196500 0.0001 - -
5.5295 197000 0.0001 - -
5.5436 197500 0.0001 - -
5.5576 198000 0.0001 0.8257 0.7844
5.5716 198500 0.0001 - -
5.5857 199000 0.0001 - -
5.5997 199500 0.0001 - -
5.6137 200000 0.0001 0.8265 0.7844
5.6278 200500 0.0001 - -
5.6418 201000 0.0001 - -
5.6558 201500 0.0001 - -
5.6699 202000 0.0001 0.8263 0.7856
5.6839 202500 0.0001 - -
5.6979 203000 0.0001 - -
5.7120 203500 0.0001 - -
5.7260 204000 0.0001 0.8248 0.7857
5.7400 204500 0.0001 - -
5.7541 205000 0.0001 - -
5.7681 205500 0.0001 - -
5.7821 206000 0.0001 0.8252 0.7851
5.7962 206500 0.0001 - -
5.8102 207000 0.0001 - -
5.8242 207500 0.0001 - -
5.8383 208000 0.0001 0.8261 0.7853
5.8523 208500 0.0001 - -
5.8663 209000 0.0001 - -
5.8804 209500 0.0001 - -
5.8944 210000 0.0001 0.8272 0.7850
5.9085 210500 0.0001 - -
5.9225 211000 0.0001 - -
5.9365 211500 0.0001 - -
5.9506 212000 0.0001 0.8259 0.7849
5.9646 212500 0.0001 - -
5.9786 213000 0.0001 - -
5.9927 213500 0.0001 - -
6.0067 214000 0.0001 0.8253 0.7848
6.0207 214500 0.0001 - -
6.0347 215000 0.0001 - -
6.0488 215500 0.0001 - -
6.0628 216000 0.0001 0.8259 0.7855
6.0769 216500 0.0001 - -
6.0909 217000 0.0001 - -
6.1049 217500 0.0001 - -
6.1190 218000 0.0001 0.8267 0.7852
6.1330 218500 0.0001 - -
6.1470 219000 0.0001 - -
6.1611 219500 0.0001 - -
6.1751 220000 0.0001 0.8260 0.7850
6.1891 220500 0.0001 - -
6.2032 221000 0.0001 - -
6.2172 221500 0.0001 - -
6.2312 222000 0.0001 0.8258 0.7854
6.2453 222500 0.0001 - -
6.2593 223000 0.0001 - -
6.2733 223500 0.0001 - -
6.2874 224000 0.0001 0.8261 0.7847
6.3014 224500 0.0001 - -
6.3154 225000 0.0001 - -
6.3295 225500 0.0001 - -
6.3435 226000 0.0001 0.8262 0.7858
6.3575 226500 0.0001 - -
6.3716 227000 0.0001 - -
6.3856 227500 0.0001 - -
6.3996 228000 0.0001 0.8253 0.7852
6.4137 228500 0.0001 - -
6.4277 229000 0.0001 - -
6.4417 229500 0.0001 - -
6.4558 230000 0.0001 0.8263 0.7850
6.4698 230500 0.0001 - -
6.4839 231000 0.0001 - -
6.4979 231500 0.0001 - -
6.5119 232000 0.0001 0.8262 0.7850
6.5260 232500 0.0001 - -
6.5400 233000 0.0001 - -
6.5540 233500 0.0001 - -
6.5681 234000 0.0001 0.8257 0.7859
6.5821 234500 0.0001 - -
6.5961 235000 0.0001 - -
6.6102 235500 0.0001 - -
6.6242 236000 0.0001 0.8260 0.7854
6.6382 236500 0.0001 - -
6.6523 237000 0.0001 - -
6.6663 237500 0.0001 - -
6.6803 238000 0.0001 0.8267 0.7860
6.6944 238500 0.0001 - -
6.7084 239000 0.0001 - -
6.7224 239500 0.0001 - -
6.7365 240000 0.0001 0.8252 0.7854
6.7505 240500 0.0001 - -
6.7645 241000 0.0001 - -
6.7786 241500 0.0001 - -
6.7926 242000 0.0001 0.8256 0.7849
6.8066 242500 0.0001 - -
6.8207 243000 0.0001 - -
6.8347 243500 0.0001 - -
6.8488 244000 0.0001 0.8257 0.7863
6.8628 244500 0.0001 - -
6.8768 245000 0.0001 - -
6.8909 245500 0.0001 - -
6.9049 246000 0.0001 0.8253 0.7857
6.9189 246500 0.0001 - -
6.9330 247000 0.0001 - -
6.9470 247500 0.0001 - -
6.9610 248000 0.0001 0.8264 0.7855
6.9751 248500 0.0001 - -
6.9891 249000 0.0001 - -
7.0031 249500 0.0001 - -
7.0172 250000 0.0001 0.8252 0.7854
7.0312 250500 0.0001 - -
7.0452 251000 0.0001 - -
7.0593 251500 0.0001 - -
7.0733 252000 0.0001 0.8264 0.7849
7.0873 252500 0.0001 - -
7.1014 253000 0.0001 - -
7.1154 253500 0.0001 - -
7.1294 254000 0.0001 0.8263 0.7860
7.1435 254500 0.0001 - -
7.1575 255000 0.0001 - -
7.1715 255500 0.0001 - -
7.1856 256000 0.0001 0.8257 0.7850
7.1996 256500 0.0001 - -
7.2136 257000 0.0001 - -
7.2277 257500 0.0001 - -
7.2417 258000 0.0001 0.8254 0.7854
7.2557 258500 0.0001 - -
7.2698 259000 0.0001 - -
7.2838 259500 0.0001 - -
7.2978 260000 0.0001 0.8261 0.7860
7.3119 260500 0.0001 - -
7.3259 261000 0.0001 - -
7.3399 261500 0.0001 - -
7.3540 262000 0.0001 0.8257 0.7851
7.3680 262500 0.0001 - -
7.3820 263000 0.0001 - -
7.3961 263500 0.0001 - -
7.4101 264000 0.0001 0.8256 0.7853
7.4242 264500 0.0001 - -
7.4382 265000 0.0001 - -
7.4522 265500 0.0001 - -
7.4663 266000 0.0001 0.8254 0.7852
7.4803 266500 0.0001 - -
7.4943 267000 0.0001 - -
7.5084 267500 0.0001 - -
7.5224 268000 0.0001 0.8261 0.7851
7.5364 268500 0.0001 - -
7.5505 269000 0.0001 - -
7.5645 269500 0.0001 - -
7.5785 270000 0.0001 0.8251 0.7853
7.5926 270500 0.0001 - -
7.6066 271000 0.0001 - -
7.6206 271500 0.0001 - -
7.6347 272000 0.0001 0.8255 0.7852
7.6487 272500 0.0001 - -
7.6627 273000 0.0001 - -
7.6768 273500 0.0001 - -
7.6908 274000 0.0001 0.8259 0.7856
7.7048 274500 0.0001 - -
7.7189 275000 0.0001 - -
7.7329 275500 0.0001 - -
7.7469 276000 0.0001 0.8257 0.7858
7.7610 276500 0.0001 - -
7.7750 277000 0.0001 - -
7.7890 277500 0.0001 - -
7.8031 278000 0.0001 0.8255 0.7854
7.8171 278500 0.0001 - -
7.8312 279000 0.0001 - -
7.8452 279500 0.0001 - -
7.8592 280000 0.0001 0.8259 0.7856
7.8733 280500 0.0001 - -
7.8873 281000 0.0001 - -
7.9013 281500 0.0001 - -
7.9154 282000 0.0001 0.8258 0.7857
7.9294 282500 0.0001 - -
7.9434 283000 0.0001 - -
7.9575 283500 0.0001 - -
7.9715 284000 0.0001 0.8260 0.7855
7.9855 284500 0.0001 - -
7.9996 285000 0.0001 - -

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 3.3.1
  • Transformers: 4.51.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
Downloads last month
10
Safetensors
Model size
35.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jvanhoof/all-miniLM-L6-v2-mE5s-distilled-ja-en-64K-vocab-cls-36M-test

Finetuned
(419)
this model

Evaluation results