介绍

Pretrained model on 13G Chinese corpus(clue corpus small). Masked language modeling(MLM) and sentence order prediction(SOP) are used as training task. 在13g的clue corpus small数据集上进行的预训练,使用了Whole Mask LMSOP 任务

训练逻辑参考了这里。https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/language_model/ernie-1.0

训练细节:

  • paddlepaddle+paddlenlp
  • V100 x 4
  • batch size 256
  • max_seq_len 512
  • max_lr 0.0001
  • min_lr 0.00001
  • weight_decay 0.01
  • grad_clip 1.0
  • 总共训练的句子128*30w + 256*15w + 256*14.5w + 256*46.5w + 256*17w = 27648w
  • 约等于512 batch size, 100w步条件下的54%

最终loss:

[2022-02-05 16:05:59,067] [    INFO] - global step 170100, loss: 2.651634932, lm_loss: 2.603405, sop_loss: 0.048229, speed: 1.06 steps/s, ips: 271.68 seqs/s, learning rate: 6.66465e-05, loss_scaling: 137438.96875, num_good_steps: 356, num_bad_steps: 0
[2022-02-05 16:07:28,227] [    INFO] - global step 170200, loss: 2.822231531, lm_loss: 2.662831, sop_loss: 0.159401, speed: 1.12 steps/s, ips: 287.13 seqs/s, learning rate: 6.66263e-05, loss_scaling: 137438.96875, num_good_steps: 59, num_bad_steps: 0
[2022-02-05 16:08:57,346] [    INFO] - global step 170300, loss: 2.710968971, lm_loss: 2.673646, sop_loss: 0.037323, speed: 1.12 steps/s, ips: 287.26 seqs/s, learning rate: 6.66061e-05, loss_scaling: 137438.96875, num_good_steps: 159, num_bad_steps: 0
[2022-02-05 16:10:26,698] [    INFO] - global step 170400, loss: 2.867662907, lm_loss: 2.619032, sop_loss: 0.248631, speed: 1.12 steps/s, ips: 286.51 seqs/s, learning rate: 6.65859e-05, loss_scaling: 137438.96875, num_good_steps: 259, num_bad_steps: 0
[2022-02-05 16:11:55,714] [    INFO] - global step 170500, loss: 3.158756495, lm_loss: 2.953678, sop_loss: 0.205079, speed: 1.12 steps/s, ips: 287.59 seqs/s, learning rate: 6.65657e-05, loss_scaling: 137438.96875, num_good_steps: 359, num_bad_steps: 0
[2022-02-05 16:13:24,869] [    INFO] - global step 170600, loss: 2.860815048, lm_loss: 2.754750, sop_loss: 0.106064, speed: 1.12 steps/s, ips: 287.14 seqs/s, learning rate: 6.65455e-05, loss_scaling: 137438.96875, num_good_steps: 33, num_bad_steps: 0

tf版本

https://github.com/ZhuiyiTechnology/roformer

pytorch版本+tf2.0版本

https://github.com/JunnYu/RoFormer_pytorch

pytorch使用

import torch
from transformers import RoFormerForMaskedLM, BertTokenizer

text = "今天[MASK]很好,我[MASK]去公园玩。"
tokenizer = BertTokenizer.from_pretrained("junnyu/roformer_base_wwm_cluecorpussmall")
pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_base_wwm_cluecorpussmall")
pt_inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
    pt_outputs = pt_model(**pt_inputs).logits[0]
pt_outputs_sentence = "pytorch: "
for i, id in enumerate(tokenizer.encode(text)):
    if id == tokenizer.mask_token_id:
        tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1])
        pt_outputs_sentence += "[" + "||".join(tokens) + "]"
    else:
        pt_outputs_sentence += "".join(
            tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True))
print(pt_outputs_sentence)
# pytorch: 今天[天||人||气||阳||雨]很好,我[想||就||要||也||还]去公园玩。

引用

Bibtex:

@misc{su2021roformer,
      title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, 
      author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu},
      year={2021},
      eprint={2104.09864},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.