CRAFT_SciBERT_NER
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:
Loss: 0.1143
Seqeval classification report: precision recall f1-score support
CHEBI 0.74 0.70 0.72 457 CL 0.82 0.75 0.78 1099 GGP 0.92 0.93 0.93 2232 GO 0.78 0.84 0.81 2508 SO 0.83 0.81 0.82 1365 Taxon 0.99 0.99 0.99 87655
micro avg 0.98 0.98 0.98 95316 macro avg 0.85 0.84 0.84 95316
weighted avg 0.98 0.98 0.98 95316
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
---|---|---|---|---|
No log | 1.0 | 347 | 0.1140 | precision recall f1-score support |
CHEBI 0.66 0.69 0.67 457
CL 0.83 0.69 0.75 1099
GGP 0.89 0.93 0.91 2232
GO 0.76 0.85 0.80 2508
SO 0.79 0.73 0.76 1365
Taxon 0.99 0.99 0.99 87655
micro avg 0.97 0.97 0.97 95316 macro avg 0.82 0.81 0.81 95316 weighted avg 0.97 0.97 0.97 95316 | | 0.1263 | 2.0 | 695 | 0.1126 | precision recall f1-score support
CHEBI 0.73 0.69 0.71 457
CL 0.85 0.72 0.78 1099
GGP 0.91 0.93 0.92 2232
GO 0.74 0.87 0.80 2508
SO 0.82 0.80 0.81 1365
Taxon 0.99 0.99 0.99 87655
micro avg 0.97 0.97 0.97 95316 macro avg 0.84 0.83 0.83 95316 weighted avg 0.97 0.97 0.97 95316 | | 0.0326 | 3.0 | 1041 | 0.1143 | precision recall f1-score support
CHEBI 0.74 0.70 0.72 457
CL 0.82 0.75 0.78 1099
GGP 0.92 0.93 0.93 2232
GO 0.78 0.84 0.81 2508
SO 0.83 0.81 0.82 1365
Taxon 0.99 0.99 0.99 87655
micro avg 0.98 0.98 0.98 95316 macro avg 0.85 0.84 0.84 95316 weighted avg 0.98 0.98 0.98 95316 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 3
Model tree for judithrosell/CRAFT_SciBERT_NER
Base model
allenai/scibert_scivocab_uncased