Mistral 7B Merges
Collection
Merges that may or may not be worth using. All credit goes to Maxime Labonne's course, https://github.com/mlabonne/llm-course, + mergekit
•
6 items
•
Updated
WestOrcaNeuralMarco-DPO-v2-DARETIES-7B is a merge of the following models using LazyMergekit:
models:
- model: mistralai/Mistral-7B-v0.1
# No parameters necessary for base model
- model: senseable/Westlake-7B-v2
parameters:
density: 0.73
weight: 0.4
- model: decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP
parameters:
density: 0.55
weight: 0.3
- model: mlabonne/NeuralMarcoro14-7B
parameters:
density: 0.45
weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jsfs11/WestOrcaNeuralMarco-DPO-v2-DARETIES-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 73.98 |
AI2 Reasoning Challenge (25-Shot) | 71.93 |
HellaSwag (10-Shot) | 88.06 |
MMLU (5-Shot) | 64.99 |
TruthfulQA (0-shot) | 65.96 |
Winogrande (5-shot) | 82.79 |
GSM8k (5-shot) | 70.13 |